首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A为三阶实对称矩阵,A的秩为2,且 (1)求A的特征值与特征向量. (2)求矩阵A.
A为三阶实对称矩阵,A的秩为2,且 (1)求A的特征值与特征向量. (2)求矩阵A.
admin
2018-11-23
26
问题
A为三阶实对称矩阵,A的秩为2,且
(1)求A的特征值与特征向量.
(2)求矩阵A.
选项
答案
(1)由条件得A(1,2,-1)
T
=(-3,-6,3),A(1,0,1)
T
=(3,0,3),说明(1,2,-1)
T
。和(1,0,1)
T
都是A的特征向量,特征值分别为-3和3. A的秩为2<维数3,于是0也是A的特征值. A的特征值为-3,3,0. 属于-3的特征向量为c(1,2,-1)
T
,c≠0. 属于3的特征向量为c(1,0,1)
T
,c≠0. 属于0的特征向量和(1,2,-1)
T
,(1,0,1)
T
都正交, 即是方程组[*]的非零解, 解出属于0的特征向量为:c(-1,1,1)
T
,c≠0. (2)利用A的3个特征向量,建立矩阵方程求A. [*] 用初等变换法解得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/HnM4777K
0
考研数学一
相关试题推荐
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y′+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k≠0为常数.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()=1,f(1)=0.证明:(1)存在η∈(,1),使得f(η)=η;(2)对任意的k∈(—∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
设P为可逆矩阵,A=PTP.证明:A是正定矩阵.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得ηf’(η)+f(η)=0.
设二维随机变量(X,Y)在G=上服从均匀分布,则条件概率=_______
假设X是在区间(0,1)内取值的连续型随机变量,而Y=1一X.已知P{X≤0.29}=0.75,则满足P{Y≤k}=0.25的常数k=__________.
设有线性方程组(1)证明:当a1,a2,a3,a4两两不等时,此方程组无解;(2)设a1=a3=k,a2=a4=一k(k≠0)时,β1=(一1,1,1)T,β2=(1,1,一1)T是方程组的两个解,写出此方程组的通解.
设有向量组(I):α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,t+2)T,α4=(一2,一6,10,t)T.(1)t为何值时,(I)线性无关?并在此时将向量α=(4,1,6,10)T用(I)线性表出;(2)t为何值
随机试题
新生儿败血症患儿的抗生素治疗必须等血培养结果后才能开始应用。
下列肾血管疾病引起急性肾衰竭应除外
急性化脓性感染在出现波动感和坏死组织前需早期切开治疗的是
根据《票据法》的规定,下列情形中,属于汇票背书行为无效的有()。
下列各项费用中,应计入“管理费用”的有()。
一般资料:李某,男性,58岁,某剧团演员。案例介绍:李某外表英俊,事业有成,经常在各地演出。妻子反映李某为人低调,态度谦和,但近来脾气明显暴躁,与同事和邻居产生了严重的人际关系矛盾,遂强行将丈夫带来咨询。下面是咨询师与李某之间的一段咨询
人的身心发展是在______过程中实现的。
甲1岁时被乙收养并一直共同生活。甲成年后,将年老多病的生父母接到自己家中悉心照顾。2004年,甲的生父母和乙相继去世。则()。
【】是企业中最稳定的因素,它是企业永恒的财富。
Amongstthemostpopularbookswrittentodayarethosewhichareusuallyclassifiedassciencefiction.Hundredsoftitlesare【C
最新回复
(
0
)