首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年)设函数f(χ)在(一∞,+∞)内单调有界,{χn}为数列,下列命题正确的是 【 】
(2008年)设函数f(χ)在(一∞,+∞)内单调有界,{χn}为数列,下列命题正确的是 【 】
admin
2021-01-19
65
问题
(2008年)设函数f(χ)在(一∞,+∞)内单调有界,{χ
n
}为数列,下列命题正确的是 【 】
选项
A、若{χ
n
}收敛,则{f(χ
n
)}收敛.
B、若{χ
n
}单调,则{f(χ
n
)}收敛.
C、若{f(χ
n
)}收敛,则{χ
n
}收敛.
D、若{f(χ
n
)}单调,则{χ
n
}收敛.
答案
B
解析
由于f(χ)在(-∞,+∞)上单调有界,若{χ
n
}单调,则{f(χ
n
)}是单调有界数列,故{f(χ
n
)}收敛.
事实上A、C、D都是错误的.若令χ
n
=
,显然
=0,即{χ
n
}收敛,令
f(χ)=
,显然f(χ)在(-∞,+∞)上单调有界,但{f(χ
n
)}不收敛.由于
f(χ
n
)=
,所以
f(χ
n
)不存在,故A不正确.
若令χ
n
,f(χ)=arctanχ.显然{f(χ
n
)}收敛且单调,但χ
n
=n不收敛,故C和D不正确.
转载请注明原文地址:https://kaotiyun.com/show/SR84777K
0
考研数学二
相关试题推荐
设已知线性方程组Ax=b存在两个不同的解。求λ,a;
由分部积分法可知[*]又因为f(1)=0,f’(x)=[*]故[*]
求微分方程y+ycosχ=(lnχ)e-sinχ的通解.
设向量α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,-1,a+2,1),α4=(1,2,4,a+8),β=(1,1,b+3,5).问:a,b为何值时,β不能用α1,α2,α3,α4线性表示;a,b为何值时,β能用α1,α2,α3,α4线性
设当实数a为何值时,方程组Ax=b有无穷多解,并求其通解。
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
设x→a时φ(x)是x一a的n阶无穷小,u→0时f(u)是u的m阶无穷小,则x→a时f[φ(x)]是x—a的________阶无穷小.
(1997年试题,六)设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a取何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
(2000年试题,四)设Oxy平面上有正方形D=|(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求
(1991年)求
随机试题
Makinggoodchoicesaboutyourownhealthrequiresreasonableevaluation.Akeyfirststepinbetteringyourevaluationability
除油过程在整个涂装前处理工艺中占有重要地位,如果处理不好,会导致表面出现的状况是()。
Ifyouarelikemostpeople,yourintelligencevariesfromseasontoseason.Youareprobablyalot【C1】______inthespringthan
过去人们由于贫困,使用皂角树结的皂角来洗衣服、洗头发,从而起到去污的作用。皂角的主要化学成分是皂苷,皂苷的水溶液经强烈振荡能产生持久的泡沫,且不因为加热而消失,这是由于皂苷可降低水溶液的表面张力的缘故。皂苷类化合物一般不适宜做成注射剂,是因为
下列有关居住区内配置停车场(库)的叙述中,错误的是()。
(2012年)假设企业某种原材料的年需求量为4000吨,单价为10000元/吨,单次订货费用为400元,每吨年保管费率为0.8%,则该种原材料的经济订货批量为()吨。
由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有().
朱熹是理学思想的集大成者,儒学发展史上的重要人物。下列观点不属于朱熹的教育主张的是()。
Prior to the UML, there was no clear leading(111)language. Users had to choose from among many similar modeling languages with m
计算机能直接识别的语言是
最新回复
(
0
)