首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年)设函数f(χ)在(一∞,+∞)内单调有界,{χn}为数列,下列命题正确的是 【 】
(2008年)设函数f(χ)在(一∞,+∞)内单调有界,{χn}为数列,下列命题正确的是 【 】
admin
2021-01-19
123
问题
(2008年)设函数f(χ)在(一∞,+∞)内单调有界,{χ
n
}为数列,下列命题正确的是 【 】
选项
A、若{χ
n
}收敛,则{f(χ
n
)}收敛.
B、若{χ
n
}单调,则{f(χ
n
)}收敛.
C、若{f(χ
n
)}收敛,则{χ
n
}收敛.
D、若{f(χ
n
)}单调,则{χ
n
}收敛.
答案
B
解析
由于f(χ)在(-∞,+∞)上单调有界,若{χ
n
}单调,则{f(χ
n
)}是单调有界数列,故{f(χ
n
)}收敛.
事实上A、C、D都是错误的.若令χ
n
=
,显然
=0,即{χ
n
}收敛,令
f(χ)=
,显然f(χ)在(-∞,+∞)上单调有界,但{f(χ
n
)}不收敛.由于
f(χ
n
)=
,所以
f(χ
n
)不存在,故A不正确.
若令χ
n
,f(χ)=arctanχ.显然{f(χ
n
)}收敛且单调,但χ
n
=n不收敛,故C和D不正确.
转载请注明原文地址:https://kaotiyun.com/show/SR84777K
0
考研数学二
相关试题推荐
设f(χ)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf′(ξ)-f(ξ)=f(2)-2f(1).
设函数y=y(x)由方程ylny一x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性。
求微分方程yy〞+(y′)2=0的满足初始条件y(0)=1,y′(0)=的特解.
就a,b的不同取值,讨论方程组解的情况.
曲线y=x2(x≥0)上某点处作切线,使该曲线、切线与x轴所围成的面积为1/12,求切点坐标、切线方程,并求此图形绕X轴旋转一周所成立体的体积.
设向量α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,-1,a+2,1),α4=(1,2,4,a+8),β=(1,1,b+3,5).问:a,b为何值时,β不能用α1,α2,α3,α4线性表示;a,b为何值时,β能用α1,α2,α3,α4线性
计算下列反常积分:
函数f(x)=|4x3一18x2+27|在区间[0,2]上的最小值为_________,最大值为________。
设二次型经过正交变换X=QY化为标准形,求参数a,b及正交矩阵Q.
设f(x)=,则当x→0时,f(x)是g(x)的().
随机试题
A.Na+B.K+C.HCO3-D.Ca2+E.Cl-神经细胞膜在静息时通透性最大的离子是
日本药品和药事监督管理层次分为中央级、都道府县级和市町村级三级。权力集中于中央政府厚生省药务局,地方政府为贯彻执行部门。()
当上市公司发行在外的普通股股数和实现的净利润一定时,下列各项中,影响市盈率的是()。
2013年8月5日,甲基金会取得一项捐款100万元,捐赠人限定将该款项用于购置化疗设备。2014年1月15日,甲基金会购入设备,价值80万元。2014年2月20日,经与捐赠人协商,捐赠人同意将剩余的款项20万元留归甲基金会自主使用。甲基金会下列处理中正确的
清初“四王”中,取得“熟不甜,生不涩,淡而厚,实而清”的收获的画家是()。
你所在辖区内的一家房地产开发商和业主因为交房和合同上不一致发生冲突,要你去处理,请问你会如何处理?
Inrecentyearsmanycountriesoftheworldhavebeenfacedwiththeproblemofhowtomaketheirworkersmoreproductive.Some
4/π
下列描述中正确的是
Itwasreally_____ofyoutoremembermybirthday.(2011-73)
最新回复
(
0
)