首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(04年)设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)β可由α1,α2,α3惟一地线
(04年)设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)β可由α1,α2,α3惟一地线
admin
2021-01-25
29
问题
(04年)设有向量α
1
=(1,2,0)
T
,α
2
=(1,a+2,-3a)
T
,α
3
=(-1,-b-2,a+2b)
T
,β=(1,3,-3)
T
.试讨论当a、b为何值时,
(1)β不能由α
1
,α
2
,α
3
线性表示;
(2)β可由α
1
,α
2
,α
3
惟一地线性表示,并求出表示式;
(3)β可由α
1
,α
2
,α
3
线性表示,但表示式不惟一,并求出表示式.
选项
答案
设有一组数χ
1
,χ
2
,χ
3
使得 χ
1
α
1
+χ
2
α
2
+χ
3
α
3
=β (*) 对方程组(*)的增广矩阵施行初等行变换: [*] (1)当a=0,b为任意常数时,有 [*] 可知r(A)≠r([*]),故方程组(*)无解,β不能由α
1
,α
2
,α
3
线性表示. (2)当a≠0,且a≠b时,r(A)=r([*])=3,方程组(*)有唯一解:χ
1
=1-[*],χ
2
=[*],χ
3
=0.故此时β可由α
1
,α
2
,α
3
唯一地线性表示为:β=[*] (3)当a=b≠0时,对[*]施行初等行变换: [*] 可知r(A)=r([*])=2,故方程组(*)有无穷多解,通解为:χ
1
=1-[*],χ
2
=[*]+C,χ
3
=C其中C为任意常数.故此时β可由α
1
,α
2
,α
3
线性表示,但表示式不唯一,其表示式为β=[*]+Cα
3
,其中C为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Hyx4777K
0
考研数学三
相关试题推荐
[2005年]设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C为().
已知函数f(x,y,z)=x3y2z及方程x+y+z一3+e-3=e-(x+y+z).(I)如果x=x(y,z)是由方程(*)确定的隐函数满足x(1,1)=1,又u=f(x(y,z),y,z),求(Ⅱ)如果z=z(x,y)是由方程(*)确定的隐函数满足
假设随机变量X与Y同分布,X的概率密度为求1/X2的数学期望.
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布.求:随机变量X和Y的联合概率密度;
设昆虫产k个卵的概率为,又设一个虫卵能孵化成昆虫的概率为p,若卵的孵化是相互独立的,问此昆虫的下一代有L条的概率是多少?
证明曲线上任一点的切线的横截距与纵截距之和为2.
设矩阵其行列式|A|=-1.又A*有一个特征值λ0,属于λ0的一个特征向量为α=[-1,-1,1]T.求a,b,c和λ0的值.
一枚均匀硬币重复掷3次,以X表示正面出现的次数,以Y表示前两次掷出正面的次数,试求随机变量X和Y的联合概率分布.
设随机变量X服从(0,1)上的均匀分布,求下列函数的密度函数:(Ⅰ)Y1=ex;(Ⅱ)Y2=一2lnX;(Ⅲ)Y3=;(Ⅳ)Y4=X.
(2014年)求幂级数的收敛域及和函数.
随机试题
下列关于律师执业的限制说法不正确的是
具有调节中耳气压功能的结构是
A.食管腐蚀伤急性期B.近期严重咯血C.脊髓灰质炎及流感等呼吸道传染病流行季节或流行地区D.白喉带菌者,经保守治疗无效者E.下呼吸道分泌物潴留扁桃体切除术的禁忌证
A.包煎B.后下C.先煎D.另煎E.冲服细小而含粘液质多的种子类药入汤剂应
有补体参与的变态反应性疾病是
税收区别于其他财政收入的基本特征是()。
猎捕国家一级保护野生动物的,应当向省级人民政府野生动物保护主管部门申请特许猎捕证。()
甲、乙、丙三人,两年后甲的年龄比乙的年龄的2倍还大3岁,一年前乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是108岁,则三年后甲的年龄比乙大()岁。
对腭小凹的描述,哪几项正确()。
Atschoolwewentoveroursocialnetworkingguidelines.【C1】______theobvious—don’tbeinappropriatewithstudentsthroughtexti
最新回复
(
0
)