首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(04年)设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)β可由α1,α2,α3惟一地线
(04年)设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)β可由α1,α2,α3惟一地线
admin
2021-01-25
81
问题
(04年)设有向量α
1
=(1,2,0)
T
,α
2
=(1,a+2,-3a)
T
,α
3
=(-1,-b-2,a+2b)
T
,β=(1,3,-3)
T
.试讨论当a、b为何值时,
(1)β不能由α
1
,α
2
,α
3
线性表示;
(2)β可由α
1
,α
2
,α
3
惟一地线性表示,并求出表示式;
(3)β可由α
1
,α
2
,α
3
线性表示,但表示式不惟一,并求出表示式.
选项
答案
设有一组数χ
1
,χ
2
,χ
3
使得 χ
1
α
1
+χ
2
α
2
+χ
3
α
3
=β (*) 对方程组(*)的增广矩阵施行初等行变换: [*] (1)当a=0,b为任意常数时,有 [*] 可知r(A)≠r([*]),故方程组(*)无解,β不能由α
1
,α
2
,α
3
线性表示. (2)当a≠0,且a≠b时,r(A)=r([*])=3,方程组(*)有唯一解:χ
1
=1-[*],χ
2
=[*],χ
3
=0.故此时β可由α
1
,α
2
,α
3
唯一地线性表示为:β=[*] (3)当a=b≠0时,对[*]施行初等行变换: [*] 可知r(A)=r([*])=2,故方程组(*)有无穷多解,通解为:χ
1
=1-[*],χ
2
=[*]+C,χ
3
=C其中C为任意常数.故此时β可由α
1
,α
2
,α
3
线性表示,但表示式不唯一,其表示式为β=[*]+Cα
3
,其中C为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Hyx4777K
0
考研数学三
相关试题推荐
[2004年]设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时,β不能由α1,α2,α3线性表示;
[2012年]设A为三阶矩阵,P为三阶可逆矩阵,且若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=().
先求[*]而且f(x)是一元函数f(u)与二元函数u=xy的复合,u是中间变量;φ(xy)是一元函数φ(υ)与二元函数υ=x+y的复合,υ是中间变量。由于[*]方便,由复合函数求导法则得[*]
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=__________.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记求:U和V的相关系数ρ.
(2014年)求幂级数的收敛域及和函数.
设z=xg(x+y)+yφ(xy),其中g、φ具有二阶连续导数,则
[2003年]设二次型f(x2,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
(1998年试题,一)曲线的渐近线方程为__________.
随机试题
下列不属于美国四大公共政策研究机构的是()
在我国现阶段的所有制结构中,国有经济对经济发展起主导作用。这主要体现在()
诊断“肠道寄生虫病”编码时,主导词应为
A、胸部后前位B、胸部右侧位C、深呼气后屏气后前位D、左侧位E、前弓位肺尖部病灶摄影体位的补充体位是
资源风险主要指开发项目,如天然气等矿产资源的()及采选方式与原预测结果发生较大偏离,导致项目开采成本增高,产量降低或者开采期缩短的可能性。
施工企业因下列情形提起行政诉讼,人民法院不予受理的是()。
利用统计调查窃取国家秘密,侵犯的客体是国家主权。()
经济周期波动风险是指证券市场行情周期性变动而引起的风险。()
毛泽东主席的《浪淘沙·北戴河》一词中“魏武挥鞭”,“魏武”指的是()。
Access中,可与Like一起使用,代表0个或者多个字符的通配符是()。
最新回复
(
0
)