首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时, β不能由α1,α2,α3线性表示;
[2004年] 设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时, β不能由α1,α2,α3线性表示;
admin
2019-04-28
27
问题
[2004年] 设α
1
=[1,2,0]
T
,α
2
=[1,a+2,-3a]
T
,α
3
=[-1,-b-2,a+2b]
T
,β=[1,3,-3]
T
.试讨论当a,b为何值时,
β不能由α
1
,α
2
,α
3
线性表示;
选项
答案
设有数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=β. ① 记A=[α
1
,α
2
,α
3
].对矩阵[A|β]施以初等行变换,有 [*] 由于系数矩阵A的秩取决于a及a-b是否为零,下面采用如下的二分法,分三种情况讨论. [*] 当a=0,b为任意常数时,有 [*] 可知秩(A)≠秩([A|β]),故方程组①无解,β不能由α
1
,α
2
,α
3
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/TzJ4777K
0
考研数学三
相关试题推荐
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设正项级数un收敛,证明收敛,并说明反之不成立.
判断级数的敛散性.
设L:y=e-x(x≥0).(1)求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).(2)设V(c)=V(a),求c.
(1)求常数m,n的值,使得=3.(2)设当x→0时,x-(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,f(x)=ln(1+t)dt~g(x)=xa(ebx-1),求a,b.
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是________。
计算dxdy,其中D为单位圆x2+y2=1所围成的第一象限的部分.
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足z=h(t)-,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间(其中长度单位是cm,时间单位为h)?
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.(1)求旋转曲面的方程;(2)求曲面S介于平面z=0与z=1之间的体积.
随机试题
永磁电动刮水器_______。
合同的形式,是指当事人之间订立合同的方式,包括()。
妇女的实用性社会性别需求不包括()。
一天某甲带刀要去少某乙,走到半路又打消了杀人的念头。实际上这天某乙出差到外地去了,即使他去了也杀不成。但甲并不知道乙不在家,而是自动放弃了杀人行为,该行为是()。
2010年,少儿读物进口额占图书进口总额的()。
Methodsofstudyingvary:whatworks【C1】______forsomestudentsdoesn’tworkatallforothers.Theonlythingyoucandoisexp
一个已经公认的结论是,北美洲人的祖先来自亚洲。至于亚洲人是如何到达北美的呢,科学家们一直假设,亚洲人是跨越在14000年以前还连接着北美和亚洲但后来沉人海底的陆地进入北美的,在艰难的迁徙途中,他们靠捕猎沿途陆地上的动物为食。最近的新发现导致了一个新的假设
(2012年单选10)关于法律规则与法律条文的关系,下列表述中正确的是()。
探望病人通常会送上一束鲜花。但某国曾有报道说,医院花瓶养花的水可能含有很多细菌,鲜花会在夜间与病人争夺氧气,还可能影响病房里电子设备的工作。这引起了人们对鲜花的恐慌,该国一些医院甚至禁止在病房内摆放鲜花。尽管后来证实鲜花并未导致更多的病人受感染,并且权威部
Neon(霓虹)istoHongKongasredphoneboothsaretoLondonandfogistoSanFrancisco.Whennightfalls,redandblueandothe
最新回复
(
0
)