首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(x)<0,试证明:存在ξ∈(a,b)使=0.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(x)<0,试证明:存在ξ∈(a,b)使=0.
admin
2019-09-27
54
问题
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(x)<0,试证明:存在ξ∈(a,b)使
=0.
选项
答案
令φ(x)=f(x)∫
x
b
g(t)dt+g(x)∫
a
x
f(t)dt, 则φ(x)在区间[a,b]上连续,在区间(a,b)内可导,且 φ′(x)=[f′(x)∫
x
b
g(t)dt-f(x)g(x)]+[g(x)f(x)+g′(x)∫
a
x
f(t)dt] =f′(x)∫
x
b
g(t)dt+g′(x)∫
a
x
f(t)dt, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ′(ξ)=0,即 f′(ξ)∫
ξ
b
g(t)dt+g′(ξ)∫
a
ξ
f(t)dt=0, 由于g(b)=0及g′(x)<0,所以区间(a,b)内必有g(x)>0, 从而就有∫
x
b
g(t)dt>0,于是有[*]=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/I1S4777K
0
考研数学一
相关试题推荐
设直线L为平面π为4x-2y+z-2=0,则()
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
设二次型为f﹦x12﹢2x22﹢6x32﹢2x1x2﹢2x1x3﹢6x2x3。(I)用可逆线性变换化二次型为标准形,并求所用的变换矩阵;(Ⅱ)证明二次型对应的矩阵A为正定矩阵,并求可逆矩阵U,使得A﹦UTU。
设A,B均为n阶矩阵,A可逆,且A与B相似,则下列命题中正确的个数为()①AB与BA相似;②A2与B2相似;③AT与BT相似;④A-1与B-1相似。
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设总体X~N(μ1,σ2),Y~N(μ2,σ2).从总体X,Y中独立地抽取两个容量为m,n的样本X1,…,Xm和Y1,YN记样本均值分别为是σ2的无偏估计.求:Z的方:差DZ.
设,方程组AX=β有解但不唯一.求正交阵Q,使得QTAQ为对角阵.
设总体X的概率密度为又设X1,X2,…,Xn是来自X的一个简单随机样本,求未知参数θ的矩估计量
已知β可用α1,α2,…,αm线性表示,但不能用α1,α2,…,αm-1表出,试判断:(Ⅰ)αm能否用α1,α2,…,αm-1,β线性表示;(Ⅱ)αm能否用α1,α2,…,αm-1线性表示,并说明理由.
袋中装有5个白球,3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取2球,用Xi表示第i次取到的白球数,i=1,2.求(X1,X2)的联合分布;
随机试题
营养不良时患儿皮下脂肪消失的顺序为
下列属于横向一体化战略的有()。
处于成长阶段的企业,如不能轻松获得其他融资来源,经常采用的股利政策是()。
某家电企业的发展进入成熟期。下列对该企业目前经营特征的相关表述中,错误的是()。
创造性主要表现为()。
周代的音乐教育学制有()年。
拘传的适用对象为()。
根据以下资料回答题。“家电下乡”产品销售额下降最多的是几月份?()
某公司网络DHCP服务器地址为192.168.0.2,可分配IP地址为192.168.0.6~192.168.0.254,缺省网关的地址为192.168.0.1,DNS服务器地址为192.168.0.2。网络中某客户机从服务器获取IP地址后,在客户机上执
Forsafetyreasons,youshouldmovetheknifeinadirectionawayfrom______whenpeelingfruits.
最新回复
(
0
)