首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B. (2)设A=,B=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B. (2)设A=,B=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
admin
2019-08-23
103
问题
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.
(2)设A=
,B=
,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为|λE-A|=|λE—B|,所以A,B有相同的特征值,设为λ
1
,λ
2
,…,λ
n
, 因为A,B可相似对角化,所以存在可逆矩阵P
1
,P
2
,使得 [*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 令P
1
P
2
-1
=P,则P
-1
AP=B,即A~B. (2)由|λE-A|=[*]=(λ-1)
2
(λ-2)=0 得A的特征值为λ
1
=2,λ
2
=λ
3
=1; 由|λE-B|=[*]=(λ-1)
2
(λ-2)=0得 B的特征值为λ
1
=2,λ
2
=λ
3
=1. 由E-A=[*]得r(E-A)=1,即A可相似对角化; 再由E-B=[*]得r(E-B)=1,即B可相似对角化,故A~B. 由2E-A→[*]得A的属于λ
1
=2的线性无关特征向量为α
1
=[*]; 由E-A→[*]得 A的属于λ
2
=λ
3
=1的线性无关的特征向量为 [*] 由2E-B→[*]得B的属于λ
1
=2的线性无关特征向量为β
1
=[*]; 由E-B→[*]得 B的属于λ
2
=λ
3
=1的线性无关的特征向量为 [*] 再令P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/I7N4777K
0
考研数学二
相关试题推荐
已知问a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,…,αr,β的线性相关性.
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:
假设λ为n阶可逆矩阵A的一个特征值,证明:为A的伴随矩阵A*的特征值.
已知A=可对角化,求可逆矩阵P及对角矩阵∧,使P-1AP=A.
设A为实矩阵,证明ATA的特征值都是非负实数.
求证:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=1一=0下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设A=E+ααT,其中α=(α1,α2,α3)T,且αTα=2,求A的特征值和特征向量.
随机试题
对建立良好的程序设计风格,下面描述正确的是()。
WhyarethelistenerstoldtovisitaWebsite?
以下不属于维生素D缺乏性佝偻病早期临床表现的是
一张纸质报关单上最多填报20项商品。()
李四夫妇结婚多年,前不久,李四经助理理财规划师介绍,意识到作为一家之主的责任和重担,遂给自己买了一份人身保险,受益人为妻子。此份保险合同的关系人是()。
股票的未来收益包括()
采用______技术是为了减少由于过程相关性引起的流水线性能损失。
下面对对象概念描述错误的是()。
HowtoapproachReadingTestPartFive•ThispartoftheReadingTesttestsyourabilitytoidentifyadditionalorunnecessary
AnortherncoldspellgrippedmuchofnorthernandeasternChinayesterday,aslocalauthoritiesissuedterribleweatherwarning
最新回复
(
0
)