首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在xOy坐标平面上,连续曲线,过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜牢之差等于ax,(常数a>0). (1)求l的方程; (2)当l与直线y=ax所围成平面图形的而积为时,确定a的值.
在xOy坐标平面上,连续曲线,过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜牢之差等于ax,(常数a>0). (1)求l的方程; (2)当l与直线y=ax所围成平面图形的而积为时,确定a的值.
admin
2019-08-01
79
问题
在xOy坐标平面上,连续曲线,过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜牢之差等于ax,(常数a>0).
(1)求l的方程;
(2)当l与直线y=ax所围成平面图形的而积为
时,确定a的值.
选项
答案
(1)设曲线,的方程为y=f(x),则由题设可得 [*],这是一阶线性微分方程,其中[*],Q(x)=ax, 代入通解公式得 [*] 又f(1)=0=a+C,所以C=-a. 故曲线l的方程为y=ax
2
-ax. (2)曲线l与直线y=ax(a>0)所同成的平面图形如图1—3—11所示. [*] 所以[*] 故 a=2.
解析
[分析](1)利用导数的几何意义建立微分方程,并求解;(2)利用定积分计算平面图形的面积,确定参数.
[评注] 本题涉及了导数和定积分的几何意义以及一阶线性微分方程的求解,属基本题型.
转载请注明原文地址:https://kaotiyun.com/show/IDN4777K
0
考研数学二
相关试题推荐
求齐次方程组的基础解系.
设A=①a,b取什么值时存在矩阵X,满足AX-AX=B?②求满足AX-AX=B的矩阵X的一般形式.
证明函数f(x)=在(0,+∞)单调下降.
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明:r(A-aE)+r(A-bE)=n.
设A为n阶矩阵,α0≠0,满足Aα0=0,向量组α1,α2满足Aα1=α2,A2α2=α2.证明α0,α1,α2线性无关.
曲线(x-1)3=2上点(5,8)处的切线方程是_______.
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2.(1)求A的特征值.(2)当实数后满足什么条件时A+kE正定?
设f(x)在x>0上有定义,且对任意正实数x,yf(xy)=xf(y)+yf(x),f’(1)=2,试求f(x).
(1997年试题,一)已知在x=0处连续,则a=_________.
试用配方法化二次型f(x1,x2,x3)=2x12+3x22+x32+4x1x2—4x1x3—8x2x3为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及正、负惯性指数。
随机试题
凯文纳夫将临终病人家属的心理变化过程归纳为()
哲理性是文学象征意象的_______。
在动作电位的形成过程中,膜内带正电膜外带负电为
下列各项中,()不是美术作品形式的构成要素。
阅读某教师的写作教学案例,按要求答题。设立“班级墙壁贴吧”,定期发布大家感兴趣的话题帖,教师和学生都可以发布。话题发布后,教师带领学生开展课堂讨论,鼓励学生各抒己见,在此基础上捕捉学生思维的火花,促进学生深入思考。讨论之后,教师布置课后写作任务,请
已知曲线方程|z+1一i|+|z—3+2i|=10,则该曲线的离心率e=___________.
根据下面材料回答下题。假定舆论声量、美誉度和创新指数得分分别占综合竞争力权重的20%、40%、40%,那么最具竞争力的3个营销事件分别是()。
在美国商界,有很多人反对政府对商业的干预。他们认为,这种干预提高了商业成本,削弱了有益的竞争,最终对企业和公众都不利。他们列举了货车运输业、航空业和电讯业这样一些行业,在这些行业中非干预政策带来了明显的经济效益。但这些人所持的观点忽略了诸如金融业这样一些行
Thecountry’sinadequatementalhealthsystemgetsthemostattentionafterinstancesofmassviolencethatthenationhasseen
WheredidGailspendthenightsinthecountry?
最新回复
(
0
)