首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2019-09-04
55
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)sintdt,因为F(0)=F(π)=0,所以存在x
1
∈(0,π),使得 F’(x
1
)=0,即f(x
1
)sinx
1
=0,又因为sinx
1
≠0,所以f(x
1
)=0. 设x
1
是f(x)在(0,π)内唯一的零点,则当x∈(0,π)且x≠x
1
时,有sin(x-x
1
)f(x)恒正或恒负,于是∫
0
π
sin(x-x
1
)f(x)dx≠0. 而∫
0
π
sin(x-x
1
)f(x)dx=cosx
1
∫
0
π
f(x)sinxdx-sinx
1
∫
0
π
f(x)cosxdx=0,矛盾,所以f(x)在(0,π)内至少有两个零点.不妨设f(x
1
)=f(x
2
)=0,x
1
,x
2
∈(0,π)且x
1
<x
2
,由罗尔定理,存在ξ∈(x
1
,x
2
)[*](0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/IOJ4777K
0
考研数学三
相关试题推荐
要使ξ1=都是线性方程组AX=0的解,只要系数矩阵A为()
参数p、t取何值时,方程组有解、无解;当有解时,试用其导出组的基础解系表示通解.
函数F(χ,y)=是否是某个二维随机变量(X,Y)的分布函数?
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
设随机变量(X,Y)的概率密度为求Z=X+2Y的分布函数FZ(z).
判别下列级数的敛散性(k>1,a>1):
幂级数在收敛区间(-a,a)内的和函数S(x)为_______.
变换下列二次积分的积分次序:
当x→0时,1-cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值.
随机试题
王禹偁的_______有意效法自居易的平易诗风,其近体诗、绝句则不乏_______的格调,在文的方面,王禹偁既能写古文,又是四六文的高手,王禹偁的文章多有________。
对于二尖瓣狭窄伴主动脉瓣关闭不全,下列哪项不正确()(2000年)
《药品管理法》规定,劣药是指
A.机械性肠梗阻B.单纯性肠梗阻C.麻痹性肠梗阻D.痉挛性肠梗阻E.绞窄性肠梗阻外伤性腹膜后巨大血肿易发生()
依据我国现行法律的规定及相关诉讼理论,关于当事人诉讼权利能力,下列哪一选项是正确的?()(司考.四川.2008.3.48)
房地产居间服务应有如下意识()。
项目结构图是一个重要的组织工具,其反映的是()。
一般会计软件都提供数据备份功能。()
现行《宪法》规定,中央军事委员会主席向()负责。
【2009-3】人力资本理论认为,人力资本是经济增长的关键,教育是形成人力资本的重要力量。这一理论的缺陷是()。
最新回复
(
0
)