首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)连续,存在极限f(x)=B.证明: (Ⅰ)设A<B,则对ξ∈(一∞,+∞),使得f(ξ)=μ; (Ⅱ)f(x)在(一∞,+∞)有界.
设f(x)在(一∞,+∞)连续,存在极限f(x)=B.证明: (Ⅰ)设A<B,则对ξ∈(一∞,+∞),使得f(ξ)=μ; (Ⅱ)f(x)在(一∞,+∞)有界.
admin
2018-11-21
61
问题
设f(x)在(一∞,+∞)连续,存在极限
f(x)=B.证明:
(Ⅰ)设A<B,则对
ξ∈(一∞,+∞),使得f(ξ)=μ;
(Ⅱ)f(x)在(一∞,+∞)有界.
选项
答案
利用极限的性质转化为有界区间的情形. (Ⅰ)由[*]f(x)=A<μ及极限的不等式性质可知,[*]X
1
使得f(X
1
)<μ. 由[*]X
2
>X
1
使得f(X
2
)>μ.因f(x)在[X
1
,X
2
]连续,f(X
1
)<μ<f(X
2
),由连续函数介值定理知[*]ξ∈(X
1
,X
2
)[*](一∞,+∞),使得f(ξ)=μ. (Ⅱ)因[*]f(x)=B,由存在极限的函数的局部有界性定理可知,[*]X
1
使得当x∈(一∞,X
1
)时f(x)有界;[*]X
2
(>X
1
)使得当x∈(X
2
,+∞)时f(x)有界.又由有界闭区间上连续函数的有界性定理可知,f(x)在[X
1
,X
2
]上有界.因此f(x)在(一∞,+∞)上右界.
解析
转载请注明原文地址:https://kaotiyun.com/show/IOg4777K
0
考研数学一
相关试题推荐
交换积分次序=______。
已知(X,Y)在以点(0,0),(1,-1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX(x|y),fY|X(y|x);并问X与Y是否独立;(
已知随机变量X与Y的相关系数为ρ且ρ≠0,Z=aX+b,则Y与Z的相关系数仍为ρ的充要条件是()
设总体X的概率密度为其中参数θ(0<θ<1)未知。X1,X2…,Xn是来自总体X的简单随机样本,是样本均值。(Ⅰ)求参数θ的矩估计量(Ⅱ)判断是否为θ2的无偏估计量,并说明理由。
设连续型随机变量X的分布函数F(x)=求:(Ⅰ)常数A;(Ⅱ)X的密度函数f(x);(Ⅲ)
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④α肯定是其特征向量的矩阵个数为()
设函数f(x)=1-,数列{xn}满足0<x1<1且xn+1=f(xn)。数列{xn}是否收敛,若收敛,求出极限xn;若不收敛,请说明理由。
设an>0(n=l,2,…),Sn=a1+a2+…+an,则数列{Sn}有界是数列{an}收敛的
设直线则直线L1,L2的夹角为().
设随机变量Xi的分布函数为Fi(x),且密度函数fi(x)至多有有限个间断点,i=1,2.则().
随机试题
简述低压验电笔的基本结构、工作原理。
A.患肢内收、缩短、外旋畸形B.枪刺刀畸形C.屈曲、外旋、外展移位D.骨筋膜室综合征E.复位、固定、功能锻炼股骨干上1/3段骨折,近端出现
桥梁拆除施工巾,进行基础或局部块体拆除时,宜采用()的方法。
关于分包工程发生质量、安全、进度等问题给建设单位造成损失的责任承担说法,正确的是()
某银行推出一款与新兴市场资源类公司挂钩的理财产品,并保证理财产品到期时100%还本付息且预期收益率为10%。则该理财产品属于()。
如何理解社会工作“注重实践”这一特点?( )
屏幕:彩屏
根据所给资料,回答下列问题。2014年,该地区生态移民中,县内移民与县外移民人数之比与以下哪一项最接近?()
不构成单位犯罪的行为有()。
一个栈的初始状态为空。现将元素l,2,3,A,B,C依次入栈,然后再依次出栈,则元素出栈的顺序是
最新回复
(
0
)