首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,且曲线积∫[3f’(x)-2f(x)+xe2x]ydx+f’(x)dy与路径无关,求f(x).
设f(x)二阶连续可导,且曲线积∫[3f’(x)-2f(x)+xe2x]ydx+f’(x)dy与路径无关,求f(x).
admin
2018-05-21
30
问题
设f(x)二阶连续可导,且曲线积∫[3f’(x)-2f(x)+xe
2x
]ydx+f’(x)dy与路径无关,求f(x).
选项
答案
因为曲线积分与路径无关,所以有 f"(x)=3f’(x)-2f(x)+xe
2x
,即f"(x)-3f’(x)+2f(x)=xe
2x
, 由特征方程λ
2
-3λ+2=0得λ
1
=1,λ
2
=2, 则方程f"(x)-3f’(x)+2f(x)=0的通解为f’(x)=C
1
e
x
+C
2
e
2x
, 令特解f
0
(x)=x(ax+b)e
2x
,代入原微分方程得a=1/2,b=-1, 故所求f(x)=C
1
e
x
+C
1
e
2x
+([*]-x)e
2x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/IOr4777K
0
考研数学一
相关试题推荐
设g(x)=其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1.(1)a、b为何值时,g(x)在x=0处连续.(2)a、b为何值时,g(x)在x=0处可导.
设f(x)在[a,b]上二阶可导,且f(x)>0,则不等式f(a)(b一a)<∫abf(x)dx<(b一a)成立的条件是()
由曲线y=1一(x一1)2及直线y=0围成图形(如图3—1所示)绕y轴旋转而成的立体的体积V是()
若α,β,γ是单位向量且满足α+β+γ=0,则以α,β为边的平行四边形的面积S=_________.
设α,β均为n维非零列向量,且αtβ≠o.设矩阵A=αβT一E,且满足方程A2一3A=4E,则αT2=________.
设u=u(x,y,z)具有二阶连续的偏导数,且满足=x2+y2+z2,又设S为曲面:x2+y2+z2=2az(a>0),取外侧,则
设四维向量组α1=(1,1,4,2)T,α2=(1,一1,一2,6)T,α3=(一3,一1,a,一9)T,β=(1,3,10,a+b)T.问(Ⅰ)当a,b取何值时,β不能由α1,α2,α3线性表出;(Ⅱ)当a,b取何值时,β能由α1,α2,α3线性表出
求x=cost(0<t<π)将方程(1-x2)yˊˊ-xyˊ+y=0化为y关于t的微分方程,并求满足的解
下述命题①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续;②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界;③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
设函数P(x,y),Q(x,y)在单连通区域D内有一阶连续偏导数,L为D内曲线,则曲线积分∫LPdx+Qdy与路径无关的充要条件为()
随机试题
李某向人民法院起诉,要求判决与王某离婚。法院经审查后认为两人感情尚好,于是判决不予离婚。根据上述情况,下列说法中正确的是:()
甲乙被判抢劫罪,甲被判处死刑缓期二年执行,乙被判处有期徒刑15年。判决确定后,两人被交付执行。则以下说法中正确的有哪些?()
没有风险和通货膨胀情况下的平均利率是()。
负有先履行债务的贷款人在贷款合同签订后,有确切证据证明借款人出现下列哪些情形之一时,贷款人可以行使先履行抗辩权(或称不安抗辩权),中止交付约定款项,并要求借款人提供适当担保?()
“江边枫落菊花黄,少长登高望一乡”描述的是()。(2012年下半年中学真题)
幼儿看见天上的云彩,说是“有个小孩在骑大马”,这是一种()。
电影:演员:观众
对于雾霾天气,人们深受其害。殊不知,精神上也存在雾霾现象,如果不及时祛除,就会使心灵压抑灰暗,精神萎靡不振,思想浑浑噩噩,危害一点儿都不比雾霾天气小。现代社会,节奏快,压力大,矛盾多。这种精神的雾霾对个人生活和事业的害处多多。如何调适心情,驱散雾霾?一剂良
在课堂上,学生一边听课,一边做笔记,体现了注意的()品质。
HomeHealthcareNursesTheChildren’sHospitalofPhiladelphiaandTheJosephStokesJr.ResearchInstituteisproudtobean
最新回复
(
0
)