首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,且g(b)=g(a)=1,在(a,b)内f(x)与g(x)可导,且g(x)+g’(x)≠0,f’(x)≠0。证明:存在ξ,η∈(a,b),使得
设函数f(x),g(x)在[a,b]上连续,且g(b)=g(a)=1,在(a,b)内f(x)与g(x)可导,且g(x)+g’(x)≠0,f’(x)≠0。证明:存在ξ,η∈(a,b),使得
admin
2018-05-25
48
问题
设函数f(x),g(x)在[a,b]上连续,且g(b)=g(a)=1,在(a,b)内f(x)与g(x)可导,且g(x)+g’(x)≠0,f’(x)≠0。证明:存在ξ,η∈(a,b),使得
选项
答案
作辅助函数φ(x)=e
x
g(x),则φ’(x)=e
x
[g(x)+g’(x)]。于是f(x)和φ(x)在[a,b]上满足柯西中值定理,故存在一点ξ∈(a,b),使得 [*] 再作辅助函数ψ(x)=e
x
,则ψ’(x)=e
x
,故有f(x),ψ(x)在[a,b]上满足柯西中值定理,于是必存在一点η∈(a,b),使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/IQg4777K
0
考研数学一
相关试题推荐
袋中装有黑白两种颜色的球,黑球与白球个数之比为3:2.现从此袋中有放回地摸球,每次摸1个,记X为直至摸到黑、白两种颜色都出现为止所需要摸的次数,求E(X).
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1一2α1,Aα2一α1+2α2,Aα3一α2+2α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)A能否相似于对角矩阵,说明理由.
微分方程y"+2y’一3y=xex的通解为y=________.
设x与y均大于0且x≠y.证明:
微分方程满足初始条件的特解是________.
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cχ=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cχ=0的基础解系.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩降记为B.(1)证明B可逆;(2)求AB-1.
已知曲线在直角坐标系中由参数方程给出:χ=t+e-t,y=2t+e-2t(t≥0).(Ⅰ)证明该参数方程确定连续函数y=y(χ),χ∈[1,+∞).(Ⅱ)证明y=y(χ)在[1,+∞)单调上升且是凸的.(Ⅲ)求y=
设4阶矩阵A=(α1,α2,α3,α4),方程组Aχ=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c任意.记B=(α3,α2,α1,β-α4).求方程组Bχ=α1-α2的通解.
微分方程xy’+y(1nx—lny)=0满足条件y(1)=e3的解为y=___________.
随机试题
鲍姆嘉通认为美学是()
创伤的病因中不包括()
潜在青紫型先心病
左心室收缩功能常用评价指标包括
临床上最常见的脱位是
联网中的每台计算机:
天然花岗石毛光板评定等级的依据有()。
某大型设备轴承镀层原始壁厚1.2mm,在使用5年后,壁厚磨损至0.9mm,已知该镀层的最大磨损允许极限是原始厚度的60%,试估算该轴承镀层的磨损强度和磨损率。
在赠与合同中,赠与人故意不告知赠与的财产有瑕疵或者保证赠与的财产无瑕疵,造成受赠人损失的,赠与人应承担损害赔偿责任。()
Wheredidtheconversationmostprobablytakeplace?
最新回复
(
0
)