首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(a,b)内存在二阶导数,且f’’(x)<0.试证: 若x0∈(a,b),则对于(a,b)内的任何x,有 f(x0)≥f(x)-f’(x0)(x-x0), 当且仅当x=x0时等号成立;
设函数f(x)在(a,b)内存在二阶导数,且f’’(x)<0.试证: 若x0∈(a,b),则对于(a,b)内的任何x,有 f(x0)≥f(x)-f’(x0)(x-x0), 当且仅当x=x0时等号成立;
admin
2016-07-22
112
问题
设函数f(x)在(a,b)内存在二阶导数,且f’’(x)<0.试证:
若x
0
∈(a,b),则对于(a,b)内的任何x,有
f(x
0
)≥f(x)-f’(x
0
)(x-x
0
),
当且仅当x=x
0
时等号成立;
选项
答案
将f(x)在x
0
点泰勒展开,即 f(x)=f(x
0
)+f’(x
0
)(x-x
0
)+[*](x-x
0
)
2
,ξ在x
0
与x之间. 由已知f’’(x)<0,x∈(a,b)得[*](x-x
0
)
2
≤0(当且仅当x=x
0
时等号成立),于是f(x)≤f(x
0
)+f’(x
0
)(x-x
0
),即 f(x
0
)≥f(x)-f’(x
0
)(x-x
0
)(当且仅当x=x
0
时等号成立).
解析
转载请注明原文地址:https://kaotiyun.com/show/jcw4777K
0
考研数学一
相关试题推荐
设f(x)是(-∞,+∞)内以T(T>0)为周期的连续函数,且f(-x)=f(x)证明:∫0nTxf(x)dx=f(x)dx(n为正整数);
设A=,若齐次方程组AX=0的任一非零解均可用a线性表示,则a=().
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
在曲线L:上求一点(x,y,z),使得u(x,y,z)=xyz分别为最大、最小值,并求出此最大、最小值.
计算rotF·nds,其中F=(x-z)i+(x3+yz)j-3xy2k,∑是抛物面z=4-x2-y2在xOy平面上方的部分,n是∑的上侧的单位法向量.
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,<0.证明:(I)方程f(x)=0在区间(0,1)内至少存在一个实根;(Ⅱ)方程f(x)f”(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
求下列递推公式(n为正整数):
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
计算下列第一型曲线积分:其中L是以原点为中心,R为半径的右上四分之一圆周,即:x2+y2一R2,x≥0,y≥0;
随机试题
证券公司在存管银行开立的客户交易结算资金账户不能用于()。
下列句子中,加下划线的字解释错误的一项是()
不符合慢性淋巴细胞性白血病的淋巴结病理变化的是
患者,女,60岁,风湿性心脏病史,阵发性夜间呼吸困难3d。查体:BP130/100mmHg,HR126/min,心界左下扩大,心尖部Ⅳ级收缩期杂音,两肺散在干鸣,下肢无水肿,心电图示阵发性室上性心动过速。该患者经治疗病情平稳后一直服用地高辛,某天
症见头目眩晕,目胀耳鸣,脑部热痛,面色如醉,心中烦热,肢体渐觉不利。口眼渐形歪斜,脉弦长有力。治宜首选
期货公司应当对客户进行()审核。
关于中国保险业监督管理委员会的职能,下列说法正确的是()。
下列各种存货发出的补价方法中,不利于存货成本日常管理与控制的方法是()。
把新学习的材料与头脑中已有知识联系起来,从而增加新信息的意义的深层加工策略称为()。
时间序列设计的特征有()。
最新回复
(
0
)