首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
admin
2017-12-29
76
问题
设η
1
,…,η
s
是非齐次线性方程组Ax=b的s个解,k
1
,…,k
s
为实数,满足k
1
+k
2
+…+k
s
=1。证明x=k
1
η
1
+k
2
η
2
+…+k
s
η
s
也是方程组的解。
选项
答案
由于η
1
,…,η
s
是非齐次线性方程组Ax=b的s个解,故有Aη
i
=b(i=1,…,s)。 因为k
1
+k
2
+…+k
s
=1,所以 Ax=A(k
1
η
1
+k
2
η
2
+…+k
s
η
s
)=k
1
Aη
1
+k
2
Aη
2
+…+k
s
Aη
s
=b(k
1
+…+k
s
)=b, 由此可见x也是方程组的解。
解析
转载请注明原文地址:https://kaotiyun.com/show/IUX4777K
0
考研数学三
相关试题推荐
设有两个非零矩阵A=[α1,α2,…,αn]T,B=[b1,b2,…,bn]T.设C=E一ABT,其中E为n阶单位阵.证明:CTC=E—BAT—ABT+BBT的充要条件是ATA=1.
设A是n阶矩阵.证明:A=O的充要条件是AAT=O.
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元。假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布。问季初应安排多少这种商品,可以使期望销售利润最大?
已知,2阶方阵A满足矩阵方程A2一3A一2E=O.证明:A可逆,并求出其逆矩阵A-1.
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求价格函数p(t);
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设有4阶方阵A满条件AAT=2I,|A|<0,其中I是4阶单位矩阵。求A的伴随矩阵A*的一个特征值。
设二次型f(x1,x2,x3)=2(a1x1,a2x2,a3x3)2+(b1x1,b2x2,b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设D是由直线x=一2,y=0,y=2以及曲线x=所围成的平面域,则
设f(x)有二阶连续导数,且(x0,f(x0))为曲线y=f(x)的拐点,则=()
随机试题
下列选项中,不属于进货款支付形式的是()。
维生素D缺乏性佝偻病活动早期的临床表现是
当A轴线墙体的截面如无吊车厂房简图所示,截面面积A=716600mm2,ht=512mm,y1=181mm,y2=439mm,试判断下列对轴线纵墙的高厚比验算,______项为正确?下列厂房空间性能影响系数______项为正确。
浇筑混凝土单向板时,施工缝应留置在()。
(2014年)关于工作丰富化的说法,正确的是()。
根据《中华人民共和国劳动合同法》,下列条款中,属于劳动合同必要条款的有()。
同升公司以一套价值100万元的设备作为抵押,向甲借款20万元,未办理抵押登记手续。同升公司又向乙借款80万元,以该套设备作为抵押,并办理了抵押登记手续。后同升公司工作人员不小心损坏了该套设备,设备送丙修理,因欠丙5万元修理费,该套设备被丙留置。有关甲、乙、
某企业2012年1月购进一辆小汽车自用,取得汽车销售行业的增值税专用发票,发票价款300000元;另支付购买汽车零配件价款10000元;销售方提供服务并收取其他价款5000元,开具普通发票。应纳车辆购置税税额()元。
在访问Web站点时,为了验证Web站点的真实性,可以采取的行动为()。
"Whatdoyouthinkofthecompany’sforecast?""Oh,thenews______prettygood."
最新回复
(
0
)