首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续,且满足f(x)+J(x一2一t)f(t)dt=6(x一2)ex,求f(x)。
设函数f(x)连续,且满足f(x)+J(x一2一t)f(t)dt=6(x一2)ex,求f(x)。
admin
2022-09-14
66
问题
设函数f(x)连续,且满足f(x)+J(x一2一t)f(t)dt=6(x一2)e
x
,求f(x)。
选项
答案
由积分方程f(x)+∫
0
x
(x一2一t)f(t)dt=6(x一2)e
x
可知f(0)=一12。 由f(x)连续知上式中变上限积分可导,而初等函数6(x一2)e
x
是可导的,所以f(x)也可导。在方程两边对x求导得 f’(x)+∫
0
x
f(t)dt一2f(x)=6(x一1)e
x
,且f’(0)=一30。 同理可知f(x)二次可导,上式两端对x求导得 f"(x)一2f’(x)+f(x)=6xe
x
。 该二阶常系数线性微分方程的特征方程是λ
2
一2λ+1=0,故特征根是1(二重),于是对应的齐次方程的通解为F(x)=(C
1
+C
2
x)e
x
。因非齐次项Q(x)=6xe
x
,可设非齐次方程的一个特解为f
*
(x)=(Ax+B)x
2
e
x
,代入f"(x)一2f’(x)+f(x)=6xe
x
可求得A=1,B=0,从而原方程的解为f(x)=(C
1
+C
2
x+x
3
)e
x
。 利用初值条件f(0)=一12,f’(0)=一30可得C
1
=一12,C
2
=一18,故 f(x)=(x
3
一18x一12)e
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/IWf4777K
0
考研数学二
相关试题推荐
设y=y(x)是由方程确定的隐函数,则y’’=__________。
=_______
设对任意χ>0,曲线y=f(χ)上点(χ,f(χ))处的切线在y轴上的截距等于∫0χf(t)dt,求f(χ)的一般表达式为_______.
设A=E+αβT,其中α,β均为n维列向量,αTβ=3,则|A+2E|=____________。
已知二次型f(x1,x2,x3)=2x12+x22+x33+2tx1x2+tx2x3是正定的,则t的取值范围是__________
已知α1,α2,α3,α4是齐次方程组AX=0的基础解系,记β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1.实数t=_______时,β1,β2,β3,β4,也是AX=0的基础解系?
曲线y=x4(x≥0)与x轴围成的区域面积为_______.
设f(x)是区间上单调、可导的函数,且满足其中f一1是f的反函数,求f(x)。
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是()
设x>0时,可微函数f(x)及其反函数g(x)满足关系式,则f(x)=_____________________.
随机试题
“精之藏制虽在肾。而精之主宰则在心”此论是何书提出
风湿性心瓣膜病并发感染性心内膜炎时,最支持感染性心内膜炎诊断的是
对放射线不敏感的肿瘤是
丁以其管理才能入伙是否合法?丁在合伙企业之外另建新的运输企业是否合法?
同一建筑物内应采用统一规格的消火栓、水枪和水带,其中,水带长度不应超过()m。地表水作为室外消防水源时,消防车取水高度不符合要求的有()。
张某为某单位的会计人员,平时工作努力,钻研业务、积极学习提供合理化建议,这体现了张某具有()的职业道德。
已实施检验检疫的出境货物,由于客观原因不能履行合同的,报检人应向检验检疫机构申请办理撤销报检手续。()
下列各项中,属于侵犯注册商标专用权的行为的是()。
教育实践活动开展以来,很多地方和部门认真听取群众意见、仔细查摆问题。但也有一些地方、一些领导干部__________,绕开“四风"听意见,避开重点谈不足,或者不把自己摆进去,说自己轻轻带过,谈别人滔滔不绝,或者找的都是无关痛痒的“小问题”,________
下列选项中,属于继受取得所有权的方式的是()。
最新回复
(
0
)