首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组有解(1,-1,1,-1)T. (1)用导出组的基础解系表示通解; (2)写出χ2=χ3的全部解.
已知线性方程组有解(1,-1,1,-1)T. (1)用导出组的基础解系表示通解; (2)写出χ2=χ3的全部解.
admin
2019-06-28
64
问题
已知线性方程组
有解(1,-1,1,-1)
T
.
(1)用导出组的基础解系表示通解;
(2)写出χ
2
=χ
3
的全部解.
选项
答案
(1,-1,1,-1)
T
代入方程组,可得到λ=μ,但是不能求得它们的值. (1)此方程组已有了特解(1,-1,1,-1)
T
,只用再求出导出组的基础解系就可写出通解.对系数矩阵作初等行变换: A=[*]=B. ①如果2λ-1=0,则 B=[*] (1,-3,1,0)
T
和(-1/2,-1,0,1)
T
为导出组的基础解系,通解为 (1,-1,1,-1)
T
+c
1
(1,-3,1,0)
T
+c
2
(-1/2,-1,0,1)
T
,c
1
,c
2
任意. ②如果2λ-1≠0,则用2λ-1除B的第三行: [*] (-1,1/2,-1/2,1)
T
为导出组的基础解系,通解为 (1,-1,1,-1)
T
+c(-1,1/2,-1/2,1)
T
,c任意. (2)当2λ-1=0时,通解的χ
2
=-1-3c
1
-c
2
,χ
3
=1+c
1
,由于χ
2
=χ
3
,则有-1-3c
1
-c
2
=1+c
1
,从而c
2
=-2-4c
1
,因此满足χ
2
=χ
3
的通解为(2,1,1,-3)
T
+c
1
(3,1,1,-4)
T
. 当2λ-1≠0时,-1+c/2=1-c/2,得c=2,此时解为(-1,0,0,1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/IZV4777K
0
考研数学二
相关试题推荐
设对任意的x,总有φ(x)≤f(x)≤g(x),且[g(x)一φ(x)]=0,则f(x)()
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT;
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,ξ1,…,ξn-r线性无关;
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a4不能由a1,a2,a3线性表示。
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则,其中l1≠0。
曲线y=的斜渐近线方程为_______。
设n元线性方程组Ax=b,其中证明行列式|A|=(n+1)an;
计算∫1+∞arctanx/x2dx。
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2
设f(t)=arctan(1+x2+y2)dxdy,则为().
随机试题
道德反映社会现实特别是反映社会经济关系的功效和能力,被称为道德的
病人女性,80岁。肺心病,近半个月来咳嗽、咳痰,今晨呼吸困难加重,烦躁不安,神志恍惚。查体:体温36.4℃,脉搏120次/分,呼吸38次/分,口唇发绀,两肺底闻及湿啰音,血压正常。对该病人进行吸氧,下列正确的是
政府有关部门及其授权机构认定的工程咨询单位资格不包括( )。
下列城市供热工程管网布置原则中,哪一项是不正确的?()
甲公司系2014年12月成立的股份有限公司.对所得税采用资产负债表债务法核算,适用的企业所得税税率为25%,计提的各项资产减值准备均会产生暂时性差异,当期发生的可抵扣暂时性差异预计能够在未来期间转回。甲公司每年年末按净利润的10%计提法定盈余公积。(1)甲
下列各项属于用户要求的必要功能的有()。
请阅读下列材料,并按要求作答。请根据上述材料完成下列任务:依据教学目标和重难点,设计新授环节并简要说明理由。
二元论的错误在于()。
Shelly’ssnackshopwasthenamethatBrianEgemoofBadger,Iowa,appliedtohiswife’ssideofthebed.In1994Shelly,whoha
Moreandmorepeoplethesedaysareclamoringforfull-bodyplasticsurgery______popularityintheworld.
最新回复
(
0
)