首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组有解(1,-1,1,-1)T. (1)用导出组的基础解系表示通解; (2)写出χ2=χ3的全部解.
已知线性方程组有解(1,-1,1,-1)T. (1)用导出组的基础解系表示通解; (2)写出χ2=χ3的全部解.
admin
2019-06-28
40
问题
已知线性方程组
有解(1,-1,1,-1)
T
.
(1)用导出组的基础解系表示通解;
(2)写出χ
2
=χ
3
的全部解.
选项
答案
(1,-1,1,-1)
T
代入方程组,可得到λ=μ,但是不能求得它们的值. (1)此方程组已有了特解(1,-1,1,-1)
T
,只用再求出导出组的基础解系就可写出通解.对系数矩阵作初等行变换: A=[*]=B. ①如果2λ-1=0,则 B=[*] (1,-3,1,0)
T
和(-1/2,-1,0,1)
T
为导出组的基础解系,通解为 (1,-1,1,-1)
T
+c
1
(1,-3,1,0)
T
+c
2
(-1/2,-1,0,1)
T
,c
1
,c
2
任意. ②如果2λ-1≠0,则用2λ-1除B的第三行: [*] (-1,1/2,-1/2,1)
T
为导出组的基础解系,通解为 (1,-1,1,-1)
T
+c(-1,1/2,-1/2,1)
T
,c任意. (2)当2λ-1=0时,通解的χ
2
=-1-3c
1
-c
2
,χ
3
=1+c
1
,由于χ
2
=χ
3
,则有-1-3c
1
-c
2
=1+c
1
,从而c
2
=-2-4c
1
,因此满足χ
2
=χ
3
的通解为(2,1,1,-3)
T
+c
1
(3,1,1,-4)
T
. 当2λ-1≠0时,-1+c/2=1-c/2,得c=2,此时解为(-1,0,0,1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/IZV4777K
0
考研数学二
相关试题推荐
设f(x)连续可导,F(x)=∫0xf(t)f’(2a一t)dt。证明:F(2a)一2F(a)=f2(a)-f(0)f(2a)。
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,l,1)T,α2=(1,2,4)T,α3=(1,3,9)T。将向量β=(1,1,3)T用α1,α2,α3线性表示;
已知方程组(1)与方程(2)x1+5x3=0,则(1)与(2)的公共解是________。
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
曲线y=的斜渐近线方程为_______。
设函数f(x,y)可微,且对任意x,y,都有则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是()
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形。问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
设随机变量X和Y相互独立,且X的概率分布为Y的概率密度为f(y),求Z=X+Y的概率密度fZ(z).
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
计算ln(1+x2+y2)dxdy,其中D:x2+y2≤1.
随机试题
按存储介质分类,存储器可分为____________、磁性材料存储器和光介质存储器。
下列关于信息安全的描述不正确的是()
现代医学模式是属于
颧牙槽嵴通常位于哪一牙齿的上方
《德国民法典》是19世纪末自由资本主义向垄断资本主义过渡时期制定的法典,以下对其特点的描述正确的是:
在锅炉的基本特性中,热水锅炉每小时每平方米受热面所产生的热量称为受热面的()。
中国公民钱某2015年12月取得工资、薪金收入4000元,全年一次性奖金15000元,从兼职的甲公司取得收入3000元。下列关于钱某2015年12月份个人所得税的处理中,正确的有()。
“一千个读者就有一千个哈姆雷特”对此解释的理论是()。
在列表框或组合框中,能够表示当前被选中列表项序号的是
忽然有一天,宿舍楼一层走廊的顶棚被一【131】燕子相中,小夫妻忙里忙外,贴着顶棚的墙角【132】一个泥巢。碗口大小,黑黑的泥巢安静地【133】在墙角。开始,并没有谁去注意。秋天复冬天,燕子不喧闹了,燕巢更没有人注意了。照例燕子引来春天。今年,当这
最新回复
(
0
)