首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列积分: (Ⅰ)设f(x)=∫1xe-y2dy,求∫01x2f(x)dx; (Ⅱ)设函数f(x)在[0,1]连续且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy.
求下列积分: (Ⅰ)设f(x)=∫1xe-y2dy,求∫01x2f(x)dx; (Ⅱ)设函数f(x)在[0,1]连续且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy.
admin
2018-06-27
99
问题
求下列积分:
(Ⅰ)设f(x)=∫
1
x
e
-y
2
dy,求∫
0
1
x
2
f(x)dx;
(Ⅱ)设函数f(x)在[0,1]连续且∫
0
1
f(x)dx=A,求∫
0
1
dx∫
x
1
f(x)f(y)dy.
选项
答案
(Ⅰ)∫
0
1
x
2
f(x)dx=[*]∫
0
1
f(x)dx
3
=[*]x
3
f(x)|
0
1
-[*]∫
0
1
x
3
df(x) =[*]∫
0
1
x
3
e
-x
2
dx =[*]∫
0
1
x
2
de
-x
2
=[*]x
2
e
-x
2
|
1
-[*]∫
0
1
e
-x
2
dx
2
=[*]e
-1
+[*]e
-x
2
|
0
1
=[*] (Ⅱ)令φ(c)=∫
x
1
f(y)dy,则φ’(x)=-f(x),于是 ∫
0
1
dx∫
x
1
f(x)f(y)dy=∫
0
1
[∫
x
1
f(y)dy]f(x)dx =-∫
0
1
φ(x)dφ(x)=[*]φ
2
(x)|
0
1
=[*]A
2
.
解析
该例中的两个小题均是求形如∫
a
b
[f(x)∫
a
x
g(y)dy]dx的积分,它可看作区域D={(x,y)|a≤x≤b,a≤y≤x}上一个二重积分的累次积分,有时通过交换积分次序而求得它的值.作为定积分,若f(x)的原函数易求得F’(x)=f(x),则可由分部积分法得
∫
a
b
[f(x)∫
a
b
g(y)dy]dx=∫
a
b
[∫
a
b
g(y)dy]dF(x)=[F(x)∫
a
b
g(y)dy]|
a
b
-∫
a
b
F(x)g(x)dx.
若右端易求,则可求得左端的值.
转载请注明原文地址:https://kaotiyun.com/show/Iak4777K
0
考研数学二
相关试题推荐
求不定积分∫(arcsinx)2dx.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征向量;
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
设f(x)在[a,b]上有二.阶导数,且f’(x)>0.证明至少存在一点ξ∈(a,b),使
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
设D={(x,y)|x2+y2≤1},将二重积分化为定积分;
设设存在且不为零,求常数P的值及上述极限.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
过点P(0,-)作抛物线y=]的切线,该切线与抛物线及x轴围成的平面区域为D,求该区域分别绕x轴和y轴旋转而成的体积.
5kg肥皂溶于300L水中后,以每分钟10L的速度向内注入清水,同时向外抽出混合均匀的肥皂水,问何时余下的肥皂水中只有1kg肥皂.
随机试题
()是联合国通过的第一个打击跨国有组织犯罪的综合性国际条约。
梅奥主持()时,提出了“人际关系学说”。
阅读下面这首词,写一篇不少于200字的赏析文字。卜算子·咏梅
棘球蚴病的诊断方法是
企业向个人收购农副产品,可以用现金支付货款。 ( )
中国证监会有权依法对期货交易所实行监督管理,其监督形式是()。
推进“一带一路”建设是党中央、国务院统筹国内国际两个大局做出的重大决策,对开创我国全方位()新格局,促进地区及世界和平发展具有重大意义。
下列选项中,包含新事物必然战胜旧事物这一哲学道理的是()。
在金融系统中,直接经营各种存贷业务的是()。
Itishardlynecessaryformetocitealltheevidencesofthedepressing【M1】______.stateofliteracy.Thesesumsfromt
最新回复
(
0
)