首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B) ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解 ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(A)
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B) ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解 ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(A)
admin
2020-03-24
74
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B)
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②。
B、①③。
C、②④。
D、③④。
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。
下面证明①,③正确:
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即,r(B)),故
r(A)≥r(B)。
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包 含解向量的个数)相同,即
n一r(A)=n—r(B),
从而r(A)=r(B)。
转载请注明原文地址:https://kaotiyun.com/show/IdD4777K
0
考研数学三
相关试题推荐
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是().
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则
随机事件A与B互不相容,0<P(A)<1,则下列结论中一定成立的是()
设随机变量X,Y相互独立,且X~N,则与Z=Y—X同分布的随机变量是().
设随机变量X,Y相互独立,且X~N(0,1),y~N(1,1),则().
设α1=α2=α3=α4=其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为
设A、B、C三个事件两两独立,则A、B、C相互独立的充分必要条件是()
设X为连续型随机变量,方差存在,则对任意常数C和ε>0,必有()
(07年)某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<P<1),则此人第4次射击恰好第2次命中目标的概率为【】
计算行列式
随机试题
组织要想在动荡的环境中生存并得以发展,有效把握各种机会,必须顺势变革自己的()
我国《消费者权益保护法》规定的消费者权利中,核心的权利是()
乙肝肾炎的病理类型最主要为
A.生物学活性丧失B.特定的空间结构被破坏C.蛋白质溶液发生沉淀D.蛋白分子所带电荷被中和,水化膜存在E.多肽链中的肽键断裂蛋白质溶液中加入羧基肽酶时可引起
下列有关特定地区减免税手续的表述正确的是()。
首次发行采用询价方式的,应当安排不低于本次公开发行股票数量的40%优先向通过公开募集方式设立的()基金配售。①证券投资基金②商业财产保险基金③全国社会保障基金④基本养老保险基金
计算机系统中2个协作进程之间不能用来进行进程间通信的是()。
根据我国《宪法》的规定,下列权利不属于国家专属的是()。
TheFutureofPCMarketThefirstDevelopersConferenceinChinamarksamajormilestoneforMicrosoft,becausethesuccesso
A、Towarnpeoplenottodoittoooften.B、Tosuggestpeoplekeepcoolafterbeingcheated.C、Toadvisepeopletothinktwicebe
最新回复
(
0
)