首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2019-01-05
31
问题
设向量α
1
,α
2
,...,α
t
是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
(定义法) 若有一组数k,k
1
,k
2
,...,k
t
,使得 kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…k
t
(β+α
t
)=0, ① 则因α
1
,α
2
,...,α
t
是Ax=0的解,知Aα
i
=0(i=1,2,…,t),用A左乘上式的两边,有 (k+k
1
+k
2
+…+k
t
)Aβ=0. 由于Aβ≠0,故k+k
1
+k
2
+…+k
t
=0. ② 对①重新分组为(k+k
1
+…+k
t
)β+k
1
α
1
+k
2
β
2
+…+k
t
α
t
=0. ③ 把②代入③,得k
1
α
1
+k
2
α
2
+…+k
t
α
t
=0. 由于α
1
,α
2
,...,α
t
是基础解系,它们线性无关,故必有k
1
=0,k
2
=0,…,k
t
=0. 代人②式得:k=0. 因此,向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
(用秩) 经初等变换向量组的秩不变.把第1列的-1倍分别加至其余各列,有
(β,β+α
1
,β+α
2
,…,β+α
t
)→(β,α
1
,α
2
,...,α
t
).
因此 r(β,β+α
1
,β+α
2
,…,β+α
t
)=r(β,α
1
,α
2
,...,α
t
).
由于α
1
,α
2
,...,α
t
是基础解系,它们是线性无关的,秩r(α
1
,α
2
,...,α
t
)=t,又β必不能由α
1
,α
2
,...,α
t
线性表出(否则Aft=0),故r(α
1
,α
2
,...,α
t
,β)=t+1.
所以 r(β,β+α
1
,β+α
2
,…,β+α
t
)=t+1.
即向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
转载请注明原文地址:https://kaotiyun.com/show/IpW4777K
0
考研数学三
相关试题推荐
设F(x)是连续型随机变量X的分布函数,常数a>0,则∫-∞+∞[F(x+a)一F(x)]dx=____________.
设随机变量X的概率密度为若k满足概率等式则k的取值范围是__________.
设离散型随机变量X的概率函数为P{X=i}=pi+1,i=0,1,则p=__________.
已知(axy3一y2cosx)dx+(1+bysinx+3x2y2)dy为某二元函数f(x,y)的全微分,则常数
设f(x)具有连续导数,且f(0)=0,f’(0)=6,求
(06年)设非齐次线性微分方程y′+P(χ)y=Q(χ)有两个不同的解y1(χ),y2(χ),C为任意常数,则该方程的通解是【】
(11年)曲线tan(χ+y+)=ey在点(0,0)处的切线方程为_______.
设f(x)=处处可导,确定常数a,b,并求f’(x).
设则().
设有某种零件共100个,其中10个是次品,其余为合格品.现在从这些零件中不放回抽样,每次抽取一个零件,如果取出一个合格品就不再取下去,则在三次内取到合格品的概率为________。
随机试题
激情
物质生活质量指数PQLI的意义有
糖皮质激素治疗肾病综合征取得疗效的关键在于
牙周间隙变窄或消失的X线影像是
会计核算软件以()模块为核心。
下列关于投资性房地产会计处理的表述中,正确的是()。
薛某拖欠潘某借款5万元,潘某多次催要借款而薛某一直不给。在一次催要过程中,二人发生争执并大打出手,薛某将潘某殴打致伤。区公安分局遂以薛某违反《治安管理处罚法》为由,将薛某行政拘留10天。薛某不服,提起行政复议。复议机关作出复议决定,薛某仍不服。于是向法院提
恩格斯在《自然辩证法》中写道“在手的专业化意味着工具的出现,而工具意味着人所特有的活动,意味着人对自然界的具有改造作用的反作用,意味着生产”。据此可以得出结论,恩格斯认为,人与动物的根本区别在于()。
Duringthelast15years,theEarth’ssurfacetemperatureroseatarateof0.04°Cadecade,farslowerthanthe0.18℃increase
TinyCameraClippedonYourShirtA)I’vebeensnappingphotosofeverythinginfrontofmeforthelastweek.Ifwe’vepassed,
最新回复
(
0
)