首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2019-01-05
94
问题
设向量α
1
,α
2
,...,α
t
是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
(定义法) 若有一组数k,k
1
,k
2
,...,k
t
,使得 kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…k
t
(β+α
t
)=0, ① 则因α
1
,α
2
,...,α
t
是Ax=0的解,知Aα
i
=0(i=1,2,…,t),用A左乘上式的两边,有 (k+k
1
+k
2
+…+k
t
)Aβ=0. 由于Aβ≠0,故k+k
1
+k
2
+…+k
t
=0. ② 对①重新分组为(k+k
1
+…+k
t
)β+k
1
α
1
+k
2
β
2
+…+k
t
α
t
=0. ③ 把②代入③,得k
1
α
1
+k
2
α
2
+…+k
t
α
t
=0. 由于α
1
,α
2
,...,α
t
是基础解系,它们线性无关,故必有k
1
=0,k
2
=0,…,k
t
=0. 代人②式得:k=0. 因此,向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
(用秩) 经初等变换向量组的秩不变.把第1列的-1倍分别加至其余各列,有
(β,β+α
1
,β+α
2
,…,β+α
t
)→(β,α
1
,α
2
,...,α
t
).
因此 r(β,β+α
1
,β+α
2
,…,β+α
t
)=r(β,α
1
,α
2
,...,α
t
).
由于α
1
,α
2
,...,α
t
是基础解系,它们是线性无关的,秩r(α
1
,α
2
,...,α
t
)=t,又β必不能由α
1
,α
2
,...,α
t
线性表出(否则Aft=0),故r(α
1
,α
2
,...,α
t
,β)=t+1.
所以 r(β,β+α
1
,β+α
2
,…,β+α
t
)=t+1.
即向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
转载请注明原文地址:https://kaotiyun.com/show/IpW4777K
0
考研数学三
相关试题推荐
设f(x)二阶可导,且f(0)=0,令(I)确定a的取值,使得g(x)为连续函数;(II)求g’(x)并讨论函数g’(x)的连续性.
设随机变量则(X,Y)的联合分布律为________.
确定常数a和b的值,使得
设f(x)在[a,+∞)有连续导数,且f’(x)>k>0在(a,+∞)上成立,又f(a)<0,其中k是一个常数.求证:方程f(x)=0在内有且仅有一个实根.
曲线渐近线的条数是
求使得不等式在区域D=|(x,y)|x>0,y>0|内成立的最小正数A与最大负数B.
方程y’sinx=ylny满足定解条件的特解是
(15年)设函数f(χ)在定义域I上的导数大于零.若对任意的χ0∈I,曲线y=f(χ)在点(χ0,f(χ0))处的切线与直线χ=χ0及χ轴所围成区域的面积恒为4,且f(0)=2,求f(χ)的表达式.
(98年)设函数f(χ)在[1,+∞)上连续,若由曲线y=f(χ),直线χ=1,χ=t(t>1)与χ轴所围成的平面图形绕χ轴旋转一周所形成的旋转体体积为V(t)=[t2f(t)-f(1)]试求f(χ)所满足的微分方程,并求该微分方程满足
问λ为何值时,线性方程组有解,并求出解的一般形式.
随机试题
浆液性囊腺瘤的MRI表现包括
经国务院批准占用基本农田兴建国家重点建设项目的,必须遵守国家有关建设项目环境保护管理的规定。在建设项目环境影响报告书中,应当有()方案。
下列选项中与项目决策分析与评价工作的基本要求中资料数据准确可靠有关的是下列哪一项()。
编制设计任务书是项目( )阶段的工作。
下列统计指标为总量指标的有()。
社会工作者在分析服务对象的困难和问题成因时,既重视服务对象的个人原因,也重视社会原因。这种分析视角强调的是()。
nolongerdiffersissuingA.Goodmoney(62)______frombadmoneyB.makeaprofitincoinageby(63)______coinsC.Silvercoins
稳定性投机(StabilizingSpeculation)
Fromtheverybeginning,thegirl’sfamilyobjectedstronglytoherdatingthisguy.Thoughthegirllovedtheguy【C1】______,sh
A、Anexperiencedteacher.B、Afriendofthetargetlanguage.C、Aregularlearningprogram.D、Aninborntalentoflanguage.C对话中,
最新回复
(
0
)