首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求使得不等式在区域D=|(x,y)|x>0,y>0|内成立的最小正数A与最大负数B.
求使得不等式在区域D=|(x,y)|x>0,y>0|内成立的最小正数A与最大负数B.
admin
2017-05-10
58
问题
求使得不等式
在区域D=|(x,y)|x>0,y>0|内成立的最小正数A与最大负数B.
选项
答案
在区域D={x戈,y)|x>0,y>0}内 [*] 因此使上式成立的常数A的最小值就是函数[*]在区域D上的最大值.令r=x
2
+y
2
,则A的最小值就是函数[*]在区间(0,+∞)内的最大值.计算可得 [*] 这表明F(r)在(0,+∞)内的最大值是[*],从而A的最小值是[*]. 在区域D={(x,y)|x>0,y>0}内 [*] 因此使上式成立的常数B的最大值就是函数g(x,y)=xyln(x
2
+y
2
)在区域D上的最小值。计算可得 [*] 由此可知g(x,y)在D中有唯一驻点[*]因为在区域D的边界{(x,y)|x=0,y≥0}与{(x,y)|x≥0,y=0}上函数g(x,y)=0,而且当x
2
+y
2
≥1时g(x,y)≥0,从而[*]就是g(x,y)在D内的最小值.即B的最大值是[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/VPH4777K
0
考研数学三
相关试题推荐
[*]
已知是矩阵的一个特征向量.问A能否相似于对角阵?说明理由.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A;
有外形相同的球分装3个盒子,每盒10个球.其中第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一球,若取得标有字母A的球,则在第二个盒子中任取一球;
函数在点x=0处()。
设总体X一N(μ,32),其中μ为未知参数,X1,X2,…,X16为来自总体X的样本,X为样本均值.如果对于检验Hoμ=μo,取拒绝域,在显著水平a=0.05下,k的值为_____.(附φ(1.65)=0.95,φ(1.96)=0.975)
设随机变量X在[2.5]上服从均匀分布,现对X进行3次独立观测,求3次观测中至少有两次出现事件{X>3}的概率为_____.
设F(x)在闭区间[0,c]上连续,其导数F’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:F(a+b)≤F(a)+F(b),其中常数,a,b满足条件0≤a≤b≤a+b≤c.
设,其中f(x)为连续函数,则等于().
假设随机变量X和Y同分布,X的概率密度为f(x)=(Ⅰ)已知事件A={X>a}和B={Y>a}独立,且P(A∪B)=3/4,求常数a;(Ⅱ)求1/X2的数学期望.
随机试题
糖尿病最易发生的感染是()
肺炎喘嗽痰热闭肺证的用方是肺炎喘嗽阴虚肺热证的用方是
测量标准是指“具有确定的量值和相关联的测量不确定度,实现给定量定义的___________”。
定额按内容分类不包括()
某污水厂扩建工程,由原水管线、格栅间、提升泵房、沉砂池、初沉池等组成,承包单位以2250万元中标。原水管线基底标高为-6.00m(地面标高为±0.00),基坑宽度为7.3m,基底处于砂砾层内,且北邻S河,地下水位标高为-3.00m。施工前,项目经理及相关
施工图预算的编制方法有( )。
Asimilarwrongideaisthatfishandicecreamwhen______atthesametimeformapoisonouscombination.
市场经济越发达,把诚实守信作为契约道德的核心范畴和交易规范性要求就越低,越要求用法律的力量解决问题。()
实验心理学已经成为科学心理学研究的主要代表和主力,这一地位的取得离不开实验心理学创始之时众多研究者的工作和贡献。其中,开创性地提出了量化研究“心灵”思想的心理学家是()
Beggarscanbeseenonthestreets,subwayorat【C1】______spotsinalmostallthebigcities.Someareforrealandneedthemon
最新回复
(
0
)