设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.

admin2021-11-09  30

问题 设a1=1,当n≥1时,an+1,证明:数列{an}收敛并求其极限.

选项

答案令f(χ)=[*],因为f′(χ)=[*]>0(χ>0),所以数列{an}单调. 又因为a1=1,0≤an+1≤1,所以数列{an}有界,从而数列{an}收敛,令[*]=A,则有 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/Iqy4777K
0

最新回复(0)