首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(x)在(-∞,-+∞)内满足关系式f’(x)=f(x),且f(0)=1.证明:f(x)=ex.
若函数f(x)在(-∞,-+∞)内满足关系式f’(x)=f(x),且f(0)=1.证明:f(x)=ex.
admin
2016-07-22
54
问题
若函数f(x)在(-∞,-+∞)内满足关系式f’(x)=f(x),且f(0)=1.证明:f(x)=e
x
.
选项
答案
作函数φ(x)=[*] 已知f’(x)=f(x),从而φ’(x)=0,于是φ(x)=[*] 当x=0时,易知φ(0)=[*],故f(x)=e
x
.
解析
欲证f(x)=e
x
,一种思路是移项一边作辅助函数φ(x)=f(x)-e
x
,如能证明φ’(x)≡0,从而ψ(x)≡C由条件φ(0)=f(0)-1=0,得C=0,即f(x)-e
x
≡0,于是f(x)=e
x
.但φ’(x)=f’(x)-e
x
,利用已知条件φ’(x)=f(x)得f(x)-f(x)-e
x
,要证φ’(x)≡0,即要证f(x)=e
x
,而这就是我们要证明的结论,故这种思路行不通.另一种思路是由f(x)=e
x
两边同除以e
x
得辅助函数
.若能证明φ’(x)=0,从而φ(x)=C,由条件
=1得C=1,即
,因此本题利用第二种思路.
转载请注明原文地址:https://kaotiyun.com/show/Ivw4777K
0
考研数学一
相关试题推荐
设a1,a2,a3是AX=0的基础解系,则该方程组的基础解系还可表示成().
设u=,求f(t)的表达式.
求a,b的值,使积分I=∫01(b+ax-x2)dx的值最小.
求常数项级数的和:
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_______.
假设随机变量X1、X2、X3、X4相互独立,且同分布,P{Xi=0}=0.6,P{Xi=1}=0.4(i=1,2,3,4),求行列式的概率分布.
设求r(A*)及A*.
求曲面积分I=xz2dydz-sinxdxdy,其中S为曲线(1≤z≤2)绕z轴旋转而成的旋转面,其法向量与z轴正向的夹角为锐角.
随机试题
青春期与围绝经期功血治疗原则的不同点是()
酚妥拉明是
Justtellmewhatsubjectyou’dlikemeto______sothatIcouldgetsomenotesready.
开展党的群众路线教育实践活动的主要任务是聚焦到()上。
整个人类社会都离不开警察,原始社会以及将来的共产主义社会都会有警察的存在。( )
歌德评价帕格尼尼“在琴弦上展现了火一样的灵魂”。巴黎人为他的琴声陶醉,忘记了当时正在流行的霍乱。在维也纳,一个盲人听到他的琴声,以为是一个乐队在演奏,当得知这只是一个叫帕格尼尼的意大利人用一把小提琴奏出的声音时,盲人大叫一声:“这是个魔鬼!”这段文
英国每日邮报报道.在前往Azasskava洞穴的探险中,参与者发现了雪人的脚印,以及各种雪人用来表示他占领领地的标记——折断的树枝,另外在位于克麦罗沃地区某洞穴发现了灰色“头发”样本。据此.俄罗斯当局宣称雪人正生活在西伯利亚。下列哪项如果为真,最能质疑俄罗
ThereisasubstantialbodyofevidenceshowingthatHIVcausesAIDS—andthatantiretroviraltreatment(ART)hasturnedtheviral
在OSI七层协议中,_____________充当了翻译官的角色,确保一个数据对象能在网络中的计算机间以双方协商的格式进行准确的数据转换和加解密。
Themantowhomwehandedtheformspointedoutthattheyhadnotbeen______filledin.
最新回复
(
0
)