首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续可导,f(x)在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0, 证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η(η≠
设f(x)在[a,b]上连续可导,f(x)在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0, 证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η(η≠
admin
2022-06-30
55
问题
设f(x)在[a,b]上连续可导,f(x)在(a,b)内二阶可导,f(a)=f(b)=0,∫
a
b
f(x)dx=0,
证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η(η≠ξ),使得f"(η)=f(η).
选项
答案
(1)令F(x)= ∫
a
x
f(t)dt,F(a)=F(b)=0, 由罗尔定理,存在c∈(a,b),使得F’(c)=0,即f(c)=0. 令h(x)=e
-x
f(x),h(a)=h(c)=0, 由罗尔定理,存在ξ∈(a,c),使得h’(ξ)=0, 由h’(x)=e
-x
[f’(x)-f(x)]且e
-x
≠0,故f’(ξ)=f(ξ). (2)同理,由h(c)=h(b)=0,则存在ζ∈(c,b),使得f’(ζ)=f(ζ). 令φ(x)=e
x
[f’(x)-f(x)],φ(ξ)=φ(ζ)=0, 由罗尔定理,存在η∈(ξ,ζ)[*](a,b),使得φ’(η)=0, 而φ’(x)=e
x
[f"(x)-f(x)]且e
x
≠0,故f"(η)=f(η).
解析
转载请注明原文地址:https://kaotiyun.com/show/G1f4777K
0
考研数学二
相关试题推荐
周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则y=f(x)在点(5,f(5))处的切线斜率为()
下列说法正确的是().
下列矩阵中,正定矩阵是()
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=G(x)=,则当x→0时,F(x)是G(x)的().
设有齐次线性方程组Aχ=0和Bχ=0,其中A、B均为m×n矩阵,现有4个命题:【】①若Aχ=0的解均是Bχ=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(b),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与B
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"((x)在(a,+∞)内存在且大于零,则F(x
设f(x)为二阶可导的奇函数,且x
设A是m×n矩阵,且m>n,下列命题正确的是().
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列结论中正确的个数是()①φ[f(x)]必有间断点;②[φ(x)]2必有间断点;③f[φ(x)]没有间断点。
求曲线在A(-1,0),B(2,3),C(3,0)三点处的切线方程.
随机试题
桔梗治疗咳嗽痰多,其机制是
在应用利妥昔单抗治疗前,需对患者进行基因筛查,筛查的项目是()。
大肠癌术后错误的护理是
经济业务发生后,引起有关会计要素增减变动,下列表达正确的有()。
现金银行本票的申请人没有限制,所有人都可以申请。()
信用证方式的特点有()。
小王目前面临购房还是租房的选择,如果租房,房租每年60000元,押金5000元。如果购房,总价100万元,自备首付款30万元,可申请70万元贷款,20年期,房贷利率为7%,按年等额本息方式还款。假定房屋维护成本为8000元/年,押金与首付款机会成本率均为4
圆舞曲
Inordertolivealongerlife,whatshouldpeopledo?
生者
最新回复
(
0
)