首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(10年)设y1,y2是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则 【 】
(10年)设y1,y2是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则 【 】
admin
2021-01-25
45
问题
(10年)设y
1
,y
2
是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy
1
+μy
2
是该方程的解,λy
1
-μy
2
是该方程对应的齐次方程的解,则 【 】
选项
A、
B、
C、
D、
答案
A
解析
由于λy
1
+μy
2
为方程y′+p(χ)y=q(χ)的解,则
(λy
1
+μy
2
)′+p(χ)(λy
1
+μy
2
)=q(χ)
即2(y′
1
+p(χ)y
1
)+μ(y′
2
+p(χ)y
2
)=q(χ)
λq(χ)+μq(χ)=q(χ)
λ+μ=1 (1)
由于λy
1
-μy
2
为方程y′+p(χ)y=0的解,则
(λy
1
-μy
2
)+p(χ)(λy
1
-μy
2
)=0
λ(y′
1
+p(χ)y
1
)-μ(y′
2
+p(χ)y
2
)=0
λq(χ)-μq(χ)=0
λ-μ=0 (2)
由(1)式和(2)式解得λ=μ=
转载请注明原文地址:https://kaotiyun.com/show/Iyx4777K
0
考研数学三
相关试题推荐
[2005年]设矩阵A=[aij]3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵,若a11,a12,a13为3个相等的正数,则a11为().
[2004年]设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时,β可由α1,α2,α3唯一地线性表示,并求出表示式;
设随机变量X与Y独立同分布,且X的概率分布为记U=max(X,Y),V=min(X,Y).求(U,V)的概率分布;
(2002年)设函数f(x),g(x)在[a,b]上连续,且g(x)>0,利用闭区间上连续函数的性质,证明存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx。
[2013年]设(X,Y)是二维随机变量,X的边缘概率密度为在给定X=x(0<x<1)的条件下,Y的条件概率密度为求Y的边缘概率密度fY(y);
已知A是三阶实对称矩阵且不可逆,又知Aα=3α,Aβ=β,其中α=(1,2,3)T,β=(5,1,t)T,则下列命题正确的是().①A必可相似对角化②必有t=一1③γ=(1,16,一11)T必是A的特征向量④
设{an}与{bn}为两个数列,下列说法正确的是().
(1998年)设某酒厂有一批新酿的好酒,如果现在(假定t=0)就售出,总收入为R0(元)。如果窖藏起来待来日按陈酒价格出售,t年末总收入为。假定银行的年利率为r,并以连续复利计息,试求窖藏多少年售出可使总收入的现值最大,并求r=0.06时的t值。
随机试题
轴承间隙的检测及调整中,轴颈与轴瓦的侧间隙可用()测量。
左后分支阻滞Ⅱ、Ⅲ、aVF导联QRS波型为
下列哪项不属公益论原则
甲发现去年丢失的电动自行车被路人乙推行,便上前询问,乙称从朋友丙处购买,并出示了丙出具的付款收条。如甲想追回该自行车,可以提出下列哪些理由支持请求?
冯海峰先生2008年10月获得税后工资收入10000元,生活支出3800元,当月偿还房贷2600元,利息本金各半,此外,冯先生还将在9月份以5.86元/股买入的5000股万科股票,以7.08元/股的价格卖出(不考虑手续费),并每月定期定额投资3000元购买
长期从事比较琐碎的事会丧失进取心,谈谈如何保持进取心。
某商品原价100元,3月价格下降了10%,4月价格又开始上涨,5月价格上涨到了108.9元,4、5两个月该商品的价格平均每月上涨了多少个百分点()。
设f(x)为偶函数,且f’(一1)=2,则=___________
法律教育对于新闻报道事业的意义——2007年英译汉及详解ThestudyoflawhasbeenrecognizedforcenturiesasabasicintellectualdisciplineinEuropean
Attheconferenceyesterday,ourdifferences___________________(进一步缩小),sothenextstepistoworkoutasolution.
最新回复
(
0
)