首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 设n维向量α=[a,0,…,0,a]T,a<0,E为n阶单位矩阵,矩阵 A=E-ααT,B=E+(1/a)ααT, 其中A的逆矩阵为B,则a=____________.
[2003年] 设n维向量α=[a,0,…,0,a]T,a<0,E为n阶单位矩阵,矩阵 A=E-ααT,B=E+(1/a)ααT, 其中A的逆矩阵为B,则a=____________.
admin
2019-04-28
81
问题
[2003年] 设n维向量α=[a,0,…,0,a]
T
,a<0,E为n阶单位矩阵,矩阵
A=E-αα
T
,B=E+(1/a)αα
T
,
其中A的逆矩阵为B,则a=____________.
选项
答案
-1
解析
解一 由题设有A
-1
=B,故AB=E,注意到α
T
α=2a
2
(是一个数),有
E=AB-(E-αα
T
)[E+(1/a)αα
T
]=E+(1/a)αα
T
-αα
T
-(1/a)α(α
T
α)α
T
=E+[1/a-1-(1/a)·2a
2
]αα
T
=E+(1/a-1-2a)αα
T
,
故(1/a-1-2a)αα
T
=O.因αα
T
≠O,所以1/a-1-2a=0,即(2a-1)(a+1)=0.因而a=1/2或a=-1.因a<0,故a=-1.
解二 因(E-A)
2
=(αα
T
)
2
=αα
T
αα
T
=(α
T
α)αα
T
=2a
2
αα
T
=2a
2
(E-A),
即 A
2
-2A+2a
2
A=2a
2
E-E, 亦即 A[A-(2-2a
2
)E]=(2a
2
-1)E,
故A可逆,且
由题设有
故
整理得到
而αα
T
≠O,故(a+1)(2a-1)=0,又因a<0,故a=-1.
转载请注明原文地址:https://kaotiyun.com/show/EzJ4777K
0
考研数学三
相关试题推荐
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…:αn线性无关,举例说明逆命题不成立.
设向量组线性相关,但任意两个向量线性无关,求参数t.
计算行列式.
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则()
设A=有三个线性无关的特征向量,求a及An.
设A为n阶矩阵,若Ak+1≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.(1)求旋转曲面的方程;(2)求曲面S介于平面z=0与z=1之间的体积.
若行列式的某个元素aij加1,则行列式的值增加Aij.
随机试题
总量指标动态数列是将反映某种社会经济现象的一系列总量指标按时间先后顺序排列形成的数列,可分为两类:(1)时期数列:每个指标都表示社会经济现象在一定时期内发展过程的总量,各指标值可以相加,指标数值的大小与时期长短有直接关系;(2)时点数列:每个指标都表示社会
临床上“象皮腿”的形成主要是由于
人际沟通
A.六君子汤B.补中益气汤C.玉屏风散D.金匮肾气丸E.生脉散哮病缓解期脾虚为主最宜选用
温度对酶活力的影响错误的是
1.背景:某公司承建城市跨线桥,主桥长520m,桥宽22.15m,跨越现况河渠;桥梁中三跨上部结构为钢筋混凝土预应力连续梁,跨径组合为30m+35m+30m,其余部分为22m长T形简支梁。承台平面尺寸5m×26m,以群桩形式布置128根桩,采用沉
甲公司与刘某签订了无固定期限劳动合同,根据劳动合同法律制度的规定,在劳动合同中约定的试用期不得超过()。
李老师在【化学反应原理】“原电池”一节课堂教学实施环节中,提出如下问题:镁﹣铝(NaOH溶液)形威原电池时作负极的材料是什么?教师请学生预测:大部分学生回答:铝为负极少部分学生回答:镁为负极【实验探究】
人们要做好任何工作,都要依时间、地点、条件为转移,这是因为
【B1】【B14】
最新回复
(
0
)