首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设g(x)在(﹣∞,﹢∞)内存在二阶导数,且f”(x)<0.令f(x)=g(x)﹢g(-x),则当x≠0时 ( )
设g(x)在(﹣∞,﹢∞)内存在二阶导数,且f”(x)<0.令f(x)=g(x)﹢g(-x),则当x≠0时 ( )
admin
2018-12-21
56
问题
设g(x)在(﹣∞,﹢∞)内存在二阶导数,且f
”
(x)<0.令f(x)=g(x)﹢g(-x),则当x≠0时 ( )
选项
A、f(x)>0.
B、f
’
(x)<0.
C、f
’
(x)与x同号.
D、f
’
(x))与x异号.
答案
D
解析
由f(x)=g(x)﹢g(-x),有f
’
(x)=g
’
(x)-gf
’
(-x),f
’
(0)=0,f
”
(x)=g
”
(x)﹢g
”
(-x)﹤0.
将f
’
(x)在x=0处按泰勒公式展开,有f
’
(x)=f
’
(0)﹢f
”
(ξ)x=f
”
(ξ)x,ξ介于0与x之间,
可见当x≠0时,f
’
(x))与x异号,选(D).
转载请注明原文地址:https://kaotiyun.com/show/JAj4777K
0
考研数学二
相关试题推荐
(2014年)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Aχ=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
(2011年)设向量组α1=(1,0,1)T,α2(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,
(2000年)设函数S(χ)=∫0χ|cost|dt(1)当n为正整数,且nπ≤χ<(n+1)π时,证明2n≤S(χ)<2(n+1).(2)求
(2007年)设矩阵,则A与B【】
(1993年)设F(χ)=∫1χ(2-)dt(χ>0),则函数F(χ)的单调减少区间是_______.
求内接于椭球面=1的长方体的最大体积.
求函数z=x2+y2+2x+y在区域D:x2+y2≤1上的最大值与最小值.
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
求二重积分,直线y=2,y=x所围成的平面区域.
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是()
随机试题
简述世界课程改革的趋势。
声波从外耳道传至耳内,其传导的途径是()
病原体从传染源排出后,侵入新的易感宿主前,在外环境中所经历的途径为_______。
I型慢性肾炎:Ⅲ型慢性肾炎:
地球的周围有4个圈层,最外层成为()。
以下不属于四班轮休制的有()
(2010)根据1995年颁布的《教师资格条例》,以下判断不正确的一项是()。
没有一个科学家的生命长到能够研究一个物种的演化,却可以通过研究化石和利用自然发展模拟环境等方式,推演出物种发展的过程。这一原则同样适用于对植物的研究,通过推演可以拼凑出生长了几百年甚至上千年的树木的生长过程。以下哪项为真,最能支持上述论断?
甲于1995年5月21日出生。2013年4月20日,甲因涉嫌盗窃罪被公安机关缉拿归案。2013年5月30日,人民法院开庭审理此案,在审理的过程中,甲以指定辩护人王律师的父亲与自己的父亲曾一起做生意,后来交恶为由,拒绝王律师为其进行辩护,并由自己的父亲另行委
He______thetest,buthewasn’tcarefulenough.
最新回复
(
0
)