首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明:
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明:
admin
2019-02-20
79
问题
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明:
选项
答案
【证法一】 设[*]则g’(a)=f(a)-b.令g’(a)=0,得b=f(a),即a=φ(b).当0<a<φ(b)时,由f’(x)>0有f(a)<f[φ(b)]=b,从而知g’(a)<0;当0<φ(b)<a时有f[φ(b)]=b<f(a),从而知g’(a)>0,所以g[φ(b)]为最小值,即 [*] 由于 (g[φ(b)])’
b
=f[φ(b)]φ’(b)+φ(b)-φ(b)-φ’(b)b =bφ’(b)+φ(b)-φ(b)-φ’(b)b≡0, 又 [*] 所以g[φ(b)]≡0,从而有 [*] 【证法二】 对积分[*]用变量替换后再分部积分,有 [*] 若a>φ(b),如图3.14-(1),则当a>x>φ(b)时f(a)>f(x)>f[φ(b)]=b,推知 [*] 若a<φ(b),如图3.14-(2),则当a<x<φ(b)时f(a)<f(x)<f[φ(b)]=b,推知 [*] 若a=φ(b),如图3.14-(3),则[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JFP4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关.(2)求A的特征值、特征向量.
设A为n阶正定矩阵,n维实的非零列向量ξ1,ξ2,…,ξn,满足ξiTAξi=0(i,j=1,2,…,n;i≠j).证明:向量组ξ1,ξ2,…,ξn线性无关.
设有两个n元齐次线性方程组Ax=0及Bx=0,证明:(1)若Ax=0的解都是Bx=0的解,则r(A)≥r(B).(2)若Ax=0与Bx=0同解,则r(A)=r(B).
设A为m×n矩阵,B为n×p矩阵,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(A┆B).
过曲线y=及x轴所围成的平面图形的面积为,求切点M的坐标.
设f(x)在x=0处存在二阶导数,且=0,则点x=0().
若曲线y=x2+ax+b和2y=一1+xy3在点(1,一1)处相切,其中a,b是常数,则().
已知x的概率密度f(x)=,试求:(1)未知系数a;(2)X的分布函数F(x),(3)x在区间(0,)内取值的概率.
设函数f(x)在[a,b]有定义,在开区间(a,b)内可导,则
随机试题
如何检修后尾灯不亮?
由花生四稀酸衍生的血管活性介质包括
患者36岁女性,因半年来右上后牙龈发现小疱,曾肿痛2次,流出少许咸液,要求诊治,必要的一项检查是
结核性胸膜炎胸腔穿刺抽液,每次抽液量最多不超过()
下列关于动产质押实现方式的论述中,不正确的是()。
钻孔灌注桩单排桩桩位偏差不得大于()mm。
在财政直接支付方式下,事业单位下年度恢复额度时无需进行账务处理。()
在网络消费时代的_________下,为取得读者的青睐和信任,网络文学往往会_________传统文学高贵的面具,不断地调整自我表达和呈现的_________,甚至将读者纳入互为平等的内部,通过特定的网络话语,在形式上真正实现与读者进行对话。填入划横线部分
观:看
开平矿务局
最新回复
(
0
)