首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 已知非齐次线性方程组有3个线性无关的解. (I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
[2006年] 已知非齐次线性方程组有3个线性无关的解. (I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
admin
2019-05-10
112
问题
[2006年] 已知非齐次线性方程组
有3个线性无关的解.
(I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
选项
答案
由非齐次线性方程组AX=b中线性无关的解得到相应的齐次线性方程组的线性无关的解,从而得到系数矩阵的秩的信息,再利用秩的定义可证(I). 利用(I)的结果即可求得a,b,进而可求解方程组. (I)证一 由题设有n一秩(A)+1≥3,即5一秩(A)≥3,故秩(A)≤2.又A中有一个二阶子式Δ
2
=[*]≠0,于是秩(A)≥2.综上所述,可知秩(A)=2. 证二 设α
1
,α
2
,α
3
为所给方程组AX=b的3个线性无关的解,则α
1
一α
2
,α
2
一α
3
为对应的齐次方程AX=0的两个线性无关的解,因而n一秩(A)≥2,即4一秩(A)≥2,故秩(A)≤2.又Δ
2
≠0,故秩(A)≥2,所以秩(A)=2. (Ⅱ)对增广矩阵施以初等行变换,有 [*] 因秩(A)=2,故4—2a=0,4a+b—5=0,联立两方程解得a=2,b=一3,此时有 [*] 由基础解系和特解的简便求法即得基础解系为α
1
=[一2,1,1,0]
T
,α
2
=[4,一5,0,1]
T
, 特解η=[2,一3,0,0]
T
,故其通解为x=k
1
α
1
+k
2
α
2
+η,其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/JVV4777K
0
考研数学二
相关试题推荐
求由曲线y=4-χ与χ轴围成的部分绕直线χ=3旋转一周所成的几何体的体积.
设曲线y=a+χ-χ3,其中a<0.当χ>0时,该曲线在χ轴下方与y轴、χ轴所围成图形的面积和在χ轴上方与χ轴所围成图形的面积相等,求a.
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶
设f(χ)=求f′(χ)并讨论f′(χ)在χ=0处的连续性.
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中(1)求方程组(Ⅰ)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
求微分方程(1-χ2)y〞-χy′=0的满足初始条件y(0)=0,y′(0)=1的特解.
微分方程y’+y=e-xxcosx满足条件y(0)=0的特解为__________。
设(1)用变限积分表示满足上述初值条件的特解y(x);(2)讨论是否存在,若存在,给出条件,若不存在,说明理由.
随机试题
桂枝茯苓丸证的病机是()(2002年第50题)
设变址寄存器为X,形式地址为D,(X)表示寄存器中的内容,变址寻址方式的有效地址可表示为()。
甲烷化反应是指()的反应。
公文处理工作的作用与公文的作用是一致的,没有区别的。
建筑钢材的力学性能主要包括()。
请用不超过200字的篇幅概括全部给定资料所反映的主要问题。要求:①概括全面,条理清楚,语言流畅;②不超过规定的字数。请就给定资料6、13、17所反映的主要社会问题,自拟题目,写一篇议论文。要求:1.论题不可脱离资料6、13、17所反映的主要问题;2.观
注意事项1.本题本由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分150分。2.监考人员宣布考试开始时,你才可以开始答题。3.请在题本、答题卡指定位置填写自己的姓名,填涂准考证
证据对于()相当于()对于真理
从理论上说,在资本主义社会中,能获得平均利润的剥削收入有
SmokinghasbecomesociallyunacceptableintheUS,inpartduetothehealthrisks.Smokingisprohibitedingovernmentandpub
最新回复
(
0
)