首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 已知非齐次线性方程组有3个线性无关的解. (I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
[2006年] 已知非齐次线性方程组有3个线性无关的解. (I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
admin
2019-05-10
76
问题
[2006年] 已知非齐次线性方程组
有3个线性无关的解.
(I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
选项
答案
由非齐次线性方程组AX=b中线性无关的解得到相应的齐次线性方程组的线性无关的解,从而得到系数矩阵的秩的信息,再利用秩的定义可证(I). 利用(I)的结果即可求得a,b,进而可求解方程组. (I)证一 由题设有n一秩(A)+1≥3,即5一秩(A)≥3,故秩(A)≤2.又A中有一个二阶子式Δ
2
=[*]≠0,于是秩(A)≥2.综上所述,可知秩(A)=2. 证二 设α
1
,α
2
,α
3
为所给方程组AX=b的3个线性无关的解,则α
1
一α
2
,α
2
一α
3
为对应的齐次方程AX=0的两个线性无关的解,因而n一秩(A)≥2,即4一秩(A)≥2,故秩(A)≤2.又Δ
2
≠0,故秩(A)≥2,所以秩(A)=2. (Ⅱ)对增广矩阵施以初等行变换,有 [*] 因秩(A)=2,故4—2a=0,4a+b—5=0,联立两方程解得a=2,b=一3,此时有 [*] 由基础解系和特解的简便求法即得基础解系为α
1
=[一2,1,1,0]
T
,α
2
=[4,一5,0,1]
T
, 特解η=[2,一3,0,0]
T
,故其通解为x=k
1
α
1
+k
2
α
2
+η,其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/JVV4777K
0
考研数学二
相关试题推荐
证明:∫01χm(1-χ)ndχ=∫01χn(1-χ)mdχ,并用此式计算∫01(1-χ)50dχ.
设f(χ)=求f(χ)的极值.
求u=χ2+y2+z2在约束条件,下的最小值和最大值.
求函数f(χ,y)=4χ-4y-χ2-y2在区域D:χ2+y2≤18上最大值和最小值.
设函数f(x)连续,若F(μ,ν)=dxdy,其中区域Dμν为图1—4—1中阴影部分,则=()
1由拉格朗日中值定理,得arctan(x+1)一arctanx=,ξ∈(x,x+1).且当x→+∞时,ξ→+∞因此原式=
某闸门的性状与大小如图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少米?
[2018年]设函数f(x)=若f(x)+g(x)在R上连续,则().
[2017年]微分方程y"一4y′+8y=e2x(1+cos2x)的特解可设为y*=().
随机试题
Scientists,conservationorganizationsandgovernmentstryingtostemthetideofextinctionoftenfocuseffortsonprotectedar
每一实验单位具有同等机会被分配到各对比组的原则属于
患者男,56岁。患类风湿性关节炎20年,全身关节活动受限,生活部分自理。三天前患者企图自杀被家人发现,及时将其送往医院接受诊疗,门诊以“重度抑郁症”收治入院。对患者实施给药护理时,正确的做法是
某建设工程,招标人决定采用公开招标的形式进行招标,资格审查的方式为资格预审。其招投标工作程序如下:(1)招标备案、确定招标方式。(2)发送投标邀请书。(3)编制、发出招标文件。(4)踏勘现场、答疑。(5)编制、发放资
我国工程设计专项资质按专业项目分为( )专项。
证券公司证券自营业务的内部控制中重点防范的风险包括()。Ⅰ.规模失控、决策失误Ⅱ.变相自营、账外自营Ⅲ.操纵市场、内幕交易Ⅳ.信用交易
下列有关存货会计核算的表述中,正确的有()。
下列事项中,属于业主委员会职责的是()。
下面概念中,不属于面向对象方法的是______。
HowtoBeEffectiveReaders?I.IntroductionofreadingandhowtobeeffectivereadersA.IntroductionofreadingAmethodofa
最新回复
(
0
)