首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 已知非齐次线性方程组有3个线性无关的解. (I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
[2006年] 已知非齐次线性方程组有3个线性无关的解. (I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
admin
2019-05-10
98
问题
[2006年] 已知非齐次线性方程组
有3个线性无关的解.
(I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
选项
答案
由非齐次线性方程组AX=b中线性无关的解得到相应的齐次线性方程组的线性无关的解,从而得到系数矩阵的秩的信息,再利用秩的定义可证(I). 利用(I)的结果即可求得a,b,进而可求解方程组. (I)证一 由题设有n一秩(A)+1≥3,即5一秩(A)≥3,故秩(A)≤2.又A中有一个二阶子式Δ
2
=[*]≠0,于是秩(A)≥2.综上所述,可知秩(A)=2. 证二 设α
1
,α
2
,α
3
为所给方程组AX=b的3个线性无关的解,则α
1
一α
2
,α
2
一α
3
为对应的齐次方程AX=0的两个线性无关的解,因而n一秩(A)≥2,即4一秩(A)≥2,故秩(A)≤2.又Δ
2
≠0,故秩(A)≥2,所以秩(A)=2. (Ⅱ)对增广矩阵施以初等行变换,有 [*] 因秩(A)=2,故4—2a=0,4a+b—5=0,联立两方程解得a=2,b=一3,此时有 [*] 由基础解系和特解的简便求法即得基础解系为α
1
=[一2,1,1,0]
T
,α
2
=[4,一5,0,1]
T
, 特解η=[2,一3,0,0]
T
,故其通解为x=k
1
α
1
+k
2
α
2
+η,其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/JVV4777K
0
考研数学二
相关试题推荐
设A,B都是n阶可逆矩阵,则().
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设f(χ)=求f′(χ)并讨论f′(χ)在χ=0处的连续性.
求不定积分
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
就a,b的不同取值,讨论方程组解的情况.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。求f在xTx=3下的最大值。
设函数y=y(x)由参数方程确定,其中x(t)是初值问题
[2017年]设二阶可导函数f(x)满足f(1)=f(一1)=1,f(0)=一1,且f"(x)>0,则()
随机试题
弗农认为通常是一个公司在本国(尤其是类似美国这样的发达经济体)市场上推出了一项新产品,其他国家对这项产品的需求随之产生,于是企业开始将本地制造的产品出口。当国外市场上的需求增长到一定程度时,该公司就会开始国外运营,特别是为了挤出国外竞争者。由此可见,弗农认
根据《关于进一步完善城乡医疗救助制度的意见》,具体医疗救助标准的制定依据有()。
下列关于美国废除黑人奴隶制同俄国废除农奴制的相同点的表述错误的是()。
一、注意事项1.申论考试是对考生阅读理解能力、综合分析能力、提出和解决问题能力以及文字表达能力的测试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、给定资料
A、 B、 C、 D、 A图形中直线数依次是1,2,3,4,(5)。
孟子关于教育的作用有哪些论述?
复合词
为人民服务是社会主义道德建设的核心,下列说法中,体现为人民服务的是()
下列是关于域名与p地址的关系的说明,其中的说法正确的是()。
若某二叉树的前序遍历访问顺序是ABDGCEFH,中序遍历访问顺序是DGBAECFH,则其后序遍历的节点访问顺序是______。
最新回复
(
0
)