首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 已知非齐次线性方程组有3个线性无关的解. (I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
[2006年] 已知非齐次线性方程组有3个线性无关的解. (I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
admin
2019-05-10
87
问题
[2006年] 已知非齐次线性方程组
有3个线性无关的解.
(I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
选项
答案
由非齐次线性方程组AX=b中线性无关的解得到相应的齐次线性方程组的线性无关的解,从而得到系数矩阵的秩的信息,再利用秩的定义可证(I). 利用(I)的结果即可求得a,b,进而可求解方程组. (I)证一 由题设有n一秩(A)+1≥3,即5一秩(A)≥3,故秩(A)≤2.又A中有一个二阶子式Δ
2
=[*]≠0,于是秩(A)≥2.综上所述,可知秩(A)=2. 证二 设α
1
,α
2
,α
3
为所给方程组AX=b的3个线性无关的解,则α
1
一α
2
,α
2
一α
3
为对应的齐次方程AX=0的两个线性无关的解,因而n一秩(A)≥2,即4一秩(A)≥2,故秩(A)≤2.又Δ
2
≠0,故秩(A)≥2,所以秩(A)=2. (Ⅱ)对增广矩阵施以初等行变换,有 [*] 因秩(A)=2,故4—2a=0,4a+b—5=0,联立两方程解得a=2,b=一3,此时有 [*] 由基础解系和特解的简便求法即得基础解系为α
1
=[一2,1,1,0]
T
,α
2
=[4,一5,0,1]
T
, 特解η=[2,一3,0,0]
T
,故其通解为x=k
1
α
1
+k
2
α
2
+η,其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/JVV4777K
0
考研数学二
相关试题推荐
设连续函数f(χ)满足∫0χtf(χ-t)dt-1-cosχ,求f(χ)dχ.
计算定积分
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
求方程组的通解.
将积f(χ,y)dχdy化成极坐标形式,其中D为χ2+y2=-8χ所围成的区域.
求函数f(χ)==(2-t)e-tdt的最大值与最小值.
设D1是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2.(1)试求D1绕x轴旋转而成的旋转体的体积V1;D2绕y轴旋转而成的旋转体的体积V2;(2)问
设f’(x)连续,f(0)=0,f’(0)≠0,F(x)=∫0xtf(t2-x。)dt,且当x→0时,F(x)~x,求n及f’(0).
设f(x,y)具有二阶连续偏导数,证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(a)是极大值
随机试题
食管脉裂孔()
A.酶促降解B.末梢重摄取C.进入突触后细胞D.被神经胶质细胞摄取E.被细胞所稀释去甲肾上腺素作用于受体产生效应后被消除的主要方式是
患者,男,55岁。主诉右上后牙食物嵌塞,有时遇冷热敏感。检查发现右上第二磨牙牙合面中龋,损及牙合面边缘嵴,备洞时制成邻牙合洞形若右上第二磨牙的龋洞位于近中面,未损及牙合边缘,且第一磨牙缺失,制备的洞形属于
王某将其全部收入用于住房和其他生活用品消费,当增加对住房的消费后,其他生活用品消费对王某的边际效用()。
若某件事经过风险评估,位于事件风险量区域图中的风险区A,则应采取适当措施降低其()。[2012年真题]
从19世纪中期到19世纪末,列强侵略中国的趋势主要是()。
如图,长方形ABCD的AB长16厘米,BC长20厘米,M是BC边上的中点,在AB边上取一点P,使三角形PMD的面积为100平方厘米,P点应取在距离A点几厘米处?
(2005下软设)代码走查(codewalkthrough)和代码审查(codeinspection)是两种不同的代码评审方法,这两种方法的主要区别是______。
Themanbehindthisnotion,JackMaple,isadandywhoaffectsdarkglasses,homburgs(翘边帽)andtwo-toeshoes;yethehasbecomeso
Itissimpleenoughtosaythatsincebookshaveclasses--fiction,biography,poetry--weshouldseparatethemandtakefrom
最新回复
(
0
)