首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程组ATy=0的任何解向量u均有UTb=u1b1+u2b2+…+umbm=0.
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程组ATy=0的任何解向量u均有UTb=u1b1+u2b2+…+umbm=0.
admin
2020-03-05
21
问题
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程组A
T
y=0的任何解向量u均有U
T
b=u
1
b
1
+u
2
b
2
+…+u
m
b
m
=0.
选项
答案
必要性.把A按列分块为A=[α
1
,α
2
,…,α
n
],其中α
j
(j=1,2,…,n)都是m维列向量,由于方程组Ax=b有解,所以存在向量[k
1
,k
2
,…,k
n
]
T
使 b=k
1
α
1
+k
2
α
2
,+…+k
n
α
n
. 又因A
T
=[α
1
,α
2
,…,α
n
]
T
= [*] 故满足方程组 A
T
y=0的任何解向量u均有α
j
T
u=0(j=1,2,…,n).因此, u
T
b=b
T
u=k
1
α
1
T
u+k
2
α
2
T
u+…+k
n
α
n
T
u=0. 充分性.由于满足方程组A
T
y=0的任何解向量u均有u
T
b=b
T
u=0,所以u满足方程组 [*] 令r(A)=r,则,r(A
T
)=r.从而方程组A
T
y=0的基础解系含m-r个线性无关的解向量.因为满足方程组A
T
y=0的任何解向量u都满足方程组①,以及满足方程组①的任何解向量u必满足方程组A
T
y=0,所以方程组①与方程组A
T
y=0同解,故方程组①的解空间的维数为m-r,于是 [*] 因而r(A)=r[A|b]=r,故非齐次线性方程组Ax=b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/JfS4777K
0
考研数学一
相关试题推荐
=________.
已知非齐次线性方程组A3×4X=b①有通解K1[1,2,0,一2]T+K2[4,一1,一1,一1]T+[1,0,一1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是__________.
设X,Y为两个随机变量,P(X≤1,Y≤1)=,P(X≤1)=P(Y≤1)=,则P(min(X,Y)≤1)=().
设3阶矩阵A的特征值为2,3,A.如果|2A|=-48,则λ=_______.
幂级数的收敛域为________。
若f"(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
交换积分次序=_________.
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f"(ξ)|≥|f(b)一f(a)|.
设X为随机变量,E|X|r(r>0)存在,试证明:对任意ε>0有
设问λ取何值时,(1)β不能由α1,α2,α3线性表示?(2)β可由α1,α2,α3线性表示且表达式唯一?(3)β可由α1,α2,α3线性表示但表达式不唯一?
随机试题
当堂对勘,席所言皆不妄。(《席方平》)对勘:妄:
西药和中成药可以分别开具处方,也可以开具在同一张处方上。()
引起手足搐搦发作时总血钙浓度一般低于()。
水痘的传染期是
下列关于发生腹部损伤的描述,不正确的是
胡先生,50岁,主诉头痛、发热、乏力、全身酸痛、恶心。面色潮红、皮肤干燥、发烫,呼吸音粗糙,体温38.5℃。此病的主要资料内容是
齐某系一名刑满释放人员。某日撬门入室行窃,当其将微型彩电、录像机等放入提包准备离开时,房主刘某开门进屋,齐某见状扔下提包企图逃走,刘某拦在门口并喊:“抓贼”,齐某冲上前把刘某打昏在地,夺门而逃。齐某的行为构成什么罪?
有利于水泥稳定土基层裂缝的防治措施有()。
行政处罚决定书的送达人将行政处罚决定书送交当事人时,当事人不在场的,应当在()日内依照民事诉讼法的有关规定,将行政处罚决定书送达当事人。
Ozoneisaformofoxygen.Itisfoundintheairwebreatheandintheupperatmosphere.NeartheEarth,ozoneintheairisa
最新回复
(
0
)