首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程组ATy=0的任何解向量u均有UTb=u1b1+u2b2+…+umbm=0.
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程组ATy=0的任何解向量u均有UTb=u1b1+u2b2+…+umbm=0.
admin
2020-03-05
20
问题
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程组A
T
y=0的任何解向量u均有U
T
b=u
1
b
1
+u
2
b
2
+…+u
m
b
m
=0.
选项
答案
必要性.把A按列分块为A=[α
1
,α
2
,…,α
n
],其中α
j
(j=1,2,…,n)都是m维列向量,由于方程组Ax=b有解,所以存在向量[k
1
,k
2
,…,k
n
]
T
使 b=k
1
α
1
+k
2
α
2
,+…+k
n
α
n
. 又因A
T
=[α
1
,α
2
,…,α
n
]
T
= [*] 故满足方程组 A
T
y=0的任何解向量u均有α
j
T
u=0(j=1,2,…,n).因此, u
T
b=b
T
u=k
1
α
1
T
u+k
2
α
2
T
u+…+k
n
α
n
T
u=0. 充分性.由于满足方程组A
T
y=0的任何解向量u均有u
T
b=b
T
u=0,所以u满足方程组 [*] 令r(A)=r,则,r(A
T
)=r.从而方程组A
T
y=0的基础解系含m-r个线性无关的解向量.因为满足方程组A
T
y=0的任何解向量u都满足方程组①,以及满足方程组①的任何解向量u必满足方程组A
T
y=0,所以方程组①与方程组A
T
y=0同解,故方程组①的解空间的维数为m-r,于是 [*] 因而r(A)=r[A|b]=r,故非齐次线性方程组Ax=b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/JfS4777K
0
考研数学一
相关试题推荐
在下列方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是()
=________.
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于
曲面z一ez+2xy=3在点(1,2,0)处的切平面方程为_________.
设f(u,v)一阶连续可偏导,f(tx,ty)=t3f(x,y),且fx’(1,2)=1,fy’(1,2)=4,则f(1,2)=___________.
设随机变量X的概率密度为f(x)=若k满足概率等式P(X≥k}=2/3,则k的取值范围是_______.
曲面z=x2(1一siny)+y2(1一sinx)在点(1,0,1)处的切平面方程为___________.
设级数μn收敛,必收敛的级数为
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能南α1,α2,α3线性表示,则对于任意常数k,必有
已知球A的半径为R,另一半径为r的球B的中心在球A的表面上(r≤2R). (1)求球B被夹在球A内部的表面积. (2)问r的值为多少时,该表面积为最大?并求出最大表面积的值.
随机试题
目前认为,一般经口摄入毒物几小时之内仍应洗胃()
下列行为属于侵犯软件著作权的是:()
综合布线系统的优越性有()。
【2010年真题】根据《招标投标法》,下列关于投标和开标的说法中,正确的是()。
已知复数z=+lg(a2+4a+5)i(a∈R),求是否存在实数a使复数z为实数,如果存在,求出该实数;如果不存在,请说明理由.
我国中小学的德育内容包括()。
人的全面发展和个性发展是矛盾的。
关于刑法的基本原则,下列说法正确的是()
Nooneknowshowmanlearnedtomakewords.Perhapshebeganbymakingsoundslikethosemadebyanimals.Perhapshegruntedlik
IfyourchildisaskingforUggbootsorapriceyhottoyfortheholidays,it’stimeforateachablemoment.Evenifyourkidh
最新回复
(
0
)