首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设,当a,b为何值时,存在矩阵C使得AC—CA=B,并求所有矩阵C.
[2013年] 设,当a,b为何值时,存在矩阵C使得AC—CA=B,并求所有矩阵C.
admin
2019-04-08
44
问题
[2013年] 设
,当a,b为何值时,存在矩阵C使得AC—CA=B,并求所有矩阵C.
选项
答案
设[*],则 [*] 由AC—CA=B得到四元非齐次线性方程组: [*] 存在矩阵C使AC—CA=B成立,上述方程组必有解.为此将上述方程组的增广矩阵[*]用初等行变换化为阶梯型矩阵: [*] 当a≠一1或b≠0时,因[*],方程组无解 当a=一1且b=0,因[*]=2<n=4方程组有解,且有无穷多解. 其基础解系为 α
1
=[1,α,1,0]
T
=[1,一1,1,0]
T
,α
2
=[1,0,0,1]
T
. 则对应齐次线性方程组的通解为c
1
α
1
+c
1
α
2
. 而方程组①的特解为[1,0,0,0]
T
.故方程组①的通解为 X=c
1
[1,一1,1,0]
T
+c
1
[1,0,0,1]
T
+[1,0,0,0]
T
, 即X=[x
1
,x
2
,x
3
,x
4
]
T
=[c
1
+c
2
+1,一c
1
,c
1
,c
2
]
T
,亦即 x
1
=c
1
+c
2
+1, x
2
=一c
1
, x
3
=c
1
, x
4
=c
2
(c
1
,c
2
为任意常数), 故所求的所有矩阵为[*],其中c
1
,c
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/YR04777K
0
考研数学一
相关试题推荐
设A,B为随机事件,且求(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X与Y的相关系数ρ(X,Y)。
求数列极限:(I)(M>0为常数);(Ⅱ)设数列{xn}有界,求
设若αβTx=βγTx+3β,求此方程组的通解.
设=2,求a,b的值.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:y=x2/2,P点的坐标为(1/2,1)
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
设{un},{cn}为正项数列,证明:(1)若对一切正整数n满足cnun-cn+1un+1≤0,且1/cn发散,则un也发散;(2)若对一切正整数n满足cn-cn+1≥a(a>0),且1/cn收敛,则cn也收敛.
(2013年)设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑.∑与平面z=0,z=2所围成的立体为Ω.求Ω的形心坐标.
随机试题
男性患者,20岁。1周前外出遇雨,不久“感冒”,随后畏寒、发热、咳嗽、胸膜剧烈疼痛、咳铁锈色痰。查体:体温37℃,右肺呼吸音稍低。血白细胞17×109/L,中性粒细胞89%,胸片见左上肺大片致密影。患者最可能患的疾病是什么?该病原体形态有何特征?
26岁已婚妇女,人工流产术后1周,发热4天,右下腹痛3天,追问病史有术后性交史。查体:体温39℃,血压90/60mmHg,心率102次/分,右下腹有压痛、反跳痛,妇科检查:阴道有粉红色少量液体,宫颈举痛(+),宫口闭,子宫正常大,压痛明显,双附件稍增厚,压
成分离心机离心转速的注意事项是检查人员要注意安全,转速仪的测量距离为
在进行地基基础设计时,哪些级别的建筑需要验算地基变形?
关于尾矿的错误说法的是()。
新办小型商贸批发企业申请一般纳税人资格认定的条件之一是必须自税务登记之日起( )。
假定刘先生当前投资某项目,期限为3年。第一年年初投资100000元,第二年年初又追加投资50000元,年要求回报率为10%,那么他在3年内每年末至少收回()元才是盈利的。
在研发过程中,科研机构和人员不仅需要大型仪器设备,也需要文献、数据、实验动物及其组织样本库等资源。一个调研课题的统计表明,各方对科技文献和数据的需求居于首位。目前这些重要资源大量沉淀在高校和研究院所,需要使用它们的单位(尤其是企业)无法________。这
无论“大腐败”还是“小腐败”,人民群众都深恶痛绝,领导干部都应时刻__________。对“小腐败”姑息纵容,就会产生“一窗不补,百窗必破”的“破窗效应”;对“小腐败”出招__________,则是预防腐败、反腐倡廉取得实际成效的关键。依次填入画横线部分
ChildrenarebeingaskedtoorganizeweddingsfortheirparentsaspartofaBBCdrivetoreflectmodernBritain.Traditionally,
最新回复
(
0
)