首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵. (1)已知β为n维非零列向量,若存在正整数k,使得Ak≠0,但Ak+1β=0,则向量组β,Aβ,A2β,…,Akβ线性无关; (2)证明:齐次线性方程组Anx=0与An+1x=0是同解线性方程组; (3)证明:r(
设A为n阶矩阵. (1)已知β为n维非零列向量,若存在正整数k,使得Ak≠0,但Ak+1β=0,则向量组β,Aβ,A2β,…,Akβ线性无关; (2)证明:齐次线性方程组Anx=0与An+1x=0是同解线性方程组; (3)证明:r(
admin
2017-07-26
33
问题
设A为n阶矩阵.
(1)已知β为n维非零列向量,若存在正整数k,使得A
k
≠0,但A
k+1
β=0,则向量组β,Aβ,A
2
β,…,A
k
β线性无关;
(2)证明:齐次线性方程组A
n
x=0与A
n+1
x=0是同解线性方程组;
(3)证明:r(A
n
)=r(A
n+1
).
选项
答案
(1)设 x
0
β+x
1
Aβ+x
2
A
2
β+…+x
k
A
k
β=0,上式两边左乘矩阵A
k
,由A
k+1
β=0,A
k+2
β=A(A
k+2
β)=A.0=0,…,A
k+k
β=0,可得 A
k
(x
0
oβ+x
1
β+x
2
A
2
β+…+x
k
A
k
β)=x
0
A
k
β=0, 而A
k
β≠0,有x
0
=0. 同理,再在等式两边依次乘矩阵A
k—1
,A
k—2
,…,A
2
,A,可得x
1
=x
2
=…=x
n
=0, 故向量组β,Aβ,A
2
β,…,A
k
β线性无关. (2)显然,线性方程组A
n
x=0的解必是线性方程组A
n+1
x=0的解;反过来,若A
n+1
x=0只有零解,则由行列式|A
n+1
|=|A|
n+1
≠0,可得|A|≠0.因此|A
n
|=|A|
n
≠0,故A
n
x=0也只有零解,即A
n
x=0与A
n+1
x=0为同解方程组. 若A
n+1
x=0有非零解,设存在β≠0使得A
n+1
β=0,但β不是A
n
x=0的解,即A
n
β≠0.则由(1)知β,Aβ,A
2
β,…,A
k
β线性无关,且A
n+1
β=0,A
n+1
(Aβ)=A(A
n+1
β)=0,…,A
n+1
(A
n
β)=0,即它们都是线性方程组A
n+1
x=0的解,因此A
n+1
x=0至少有n+1个线性无关的解,这与方程组A
n+1
x=0的基础解系至多有n个线性无关解矛盾,所以A
n+1
x=0的解都是A
n
x=0的解,即A
n
x=0与A
n+1
x=0为同解方程组. (3)由(2)知A
n
x=0与A
n+1
x=0为同解方程组,故 n一r(A
n
)=n一r(A
n+1
), 即r(A
n
)=r(A
n+1
).
解析
转载请注明原文地址:https://kaotiyun.com/show/JgH4777K
0
考研数学三
相关试题推荐
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.求a,b的值及方程组的通解.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0使得AB=0,则
n阶方阵(一∞,0)U(0,+∞),当a≠b且a≠一(n一1)b时,秩A=_____
设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
设b为常数.求曲线L:的斜渐近线l的方程;
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=.(1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫01f(x)dx=0.试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
设都是正项级数,试证:(1)若收敛;(2)若收敛;(3)若都收敛;(4)若收敛。
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b.试证:在[a,b]内存在ξ,使得
随机试题
关于裱糊工程工艺流程的说法,正确的是()。
某公司年度有关余额如下:资产总计700万元,流动负债160万元,所有者权益540万元,其中,普通股(200万股)200万元,资本公积150万元,保留盈余190万元。该公司为扩大经营需增加600万元资金,正考虑以下两个方案:甲方案以每股5元的价格发行120万
患者,男,65岁。有30年吸烟史,患糖尿病5年,高血压3年,长期服用降糖药,降压药。近半年体力活动后经常出现心前区疼痛不适,考虑为心绞痛。则该病发生危险因素不包括
外阴Paget病出现浸润时,最佳治疗方案是
会计科目是按会计对象的经济内容性质的不同而进行分类的标志,是对会计要素的具体内容进行分类核算的项目名称。()
基金产品风险评价需要考虑的因素包括()。Ⅰ.基金招募说明书所明示的投资方向、投资范围和投资比例Ⅱ.基金的历史规模和持仓比例Ⅲ.基金的过往业绩及基金净值的历史波动程度Ⅳ.基金成立以来有无违规行为发生
甲企业2016年度发生部分经营业务如下:(1)1月份取得国有土地4000平方米,签订了土地使用权出让合同,记载的出让金额为4000万元,并约定当月交付;然后委托施工企业建造仓库,工程4月份竣工,5月份办妥了验收手续。该仓库在甲企业账簿“固定资产”科目中记
1988年北美的干旱可能是由于太平洋赤道附近温度状况的大面积范围改变引起的。因此,这场干旱不能证明长期而言全球发生变暖趋势的假设.该趋势据称是由大气污染物如二氧化碳造成的。以下哪项如果为真,最能构成对上述论证的质疑?
[A]Thefirstandmoreimportantistheconsumer’sgrowingpreferenceforeatingout;consumptionoffoodanddrinkinplacesoth
信息系统项目往往在还没有完全搞清需求前就付诸实施,并且在实施过程中频繁修改,因此在项目管理过程中需重点关注(31)________。
最新回复
(
0
)