首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]二阶可导,f(x)>0,f’’(x)<0((x∈(a,b)),求证:∫abf(x)dx.
设f(x)在[a,b]二阶可导,f(x)>0,f’’(x)<0((x∈(a,b)),求证:∫abf(x)dx.
admin
2018-06-27
48
问题
设f(x)在[a,b]二阶可导,f(x)>0,f’’(x)<0((x∈(a,b)),求证:
∫
a
b
f(x)dx.
选项
答案
联系f(x)与f’’(x)的是泰勒公式. [*]x
0
∈[a,b],f(x
0
)=[*].将f(x
0
)在[*]∈[a,b]展开,有 f(x
0
)=f(x)+f’(x)(x
0
-x)+[*]f’’(ξ)(x
0
-x)
2
(ξ在x
0
与x之间)<f(x)+f’(x)(x
0
-x)([*]∈[a,b],x≠
0
). 两边在[a,b]上积分得 ∫
a
b
f(x
0
)dx<∫
a
b
f(x)dx+∫
a
b
f’(x)(x
0
-x)dx=∫
a
b
f(x)dx+f(x
0
-x)df(x) =∫
a
b
f(x)dx-(b-x
0
)f(b)-(x
0
-a)f(a)+∫
a
b
f(x)dx≤2∫
a
b
f(x)dx. 因此 f(x
0
)(b-a)<2∫
a
b
f(x)dx,即[*]=∫
a
b
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jik4777K
0
考研数学二
相关试题推荐
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S
求微分方程y"-2y’=e2x满足条件y(0)=1,y’(0)=1的解.
求微分方程y"+5y’+6y=2e-x的通解.
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=(α3,α2,α1,β一α4).求方程组Bx=αl—α2的通解.
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)0,则方程f(x)=0在[a,+∞)内有且仅有一个实根.
设其中f(s,t)有连续的二阶偏导数.求
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.写出与A相似的矩阵B;
随机试题
谈判的根本矛盾是()
我国规定的传染病管理报告制度中下列哪项是不正确的
混合牙列时期是
某市质监局发现一公司生产劣质产品,查封了公司的生产厂房和设备,之后决定没收全部劣质产品、罚款10万元。该公司逾期不缴纳罚款。下列哪一选项是错误的?
封闭式基金的固定存续期是()。
企业在对质量检查员的需求量进行预测时,应采用的方法是()。
下列哪些村可以建立村民代表会议?()
内容重要并紧急需要打破常规优先传递处理的文件,叫作()。
Intoday’sworld,peace,developmentandcooperationisthetrendofthetimes,theinternationalenvironmentisconducivetope
在Access数据库中已经建立"tStudent"表,若使"姓名"字段在数据表视图中显示时不能移动位置,应使用的方法是
最新回复
(
0
)