首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]二阶可导,f(x)>0,f’’(x)<0((x∈(a,b)),求证:∫abf(x)dx.
设f(x)在[a,b]二阶可导,f(x)>0,f’’(x)<0((x∈(a,b)),求证:∫abf(x)dx.
admin
2018-06-27
75
问题
设f(x)在[a,b]二阶可导,f(x)>0,f’’(x)<0((x∈(a,b)),求证:
∫
a
b
f(x)dx.
选项
答案
联系f(x)与f’’(x)的是泰勒公式. [*]x
0
∈[a,b],f(x
0
)=[*].将f(x
0
)在[*]∈[a,b]展开,有 f(x
0
)=f(x)+f’(x)(x
0
-x)+[*]f’’(ξ)(x
0
-x)
2
(ξ在x
0
与x之间)<f(x)+f’(x)(x
0
-x)([*]∈[a,b],x≠
0
). 两边在[a,b]上积分得 ∫
a
b
f(x
0
)dx<∫
a
b
f(x)dx+∫
a
b
f’(x)(x
0
-x)dx=∫
a
b
f(x)dx+f(x
0
-x)df(x) =∫
a
b
f(x)dx-(b-x
0
)f(b)-(x
0
-a)f(a)+∫
a
b
f(x)dx≤2∫
a
b
f(x)dx. 因此 f(x
0
)(b-a)<2∫
a
b
f(x)dx,即[*]=∫
a
b
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jik4777K
0
考研数学二
相关试题推荐
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设3阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T,试求矩阵A.
n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)0,则方程f(x)=0在[a,+∞)内有且仅有一个实根.
设函数f(x)在[0,+∞)内二阶可导,并当x>0时满足xf’’(x)+3戈[f’(x)]2≤1—e-x.求证:当x>0时f’’(x)
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
设f(x)=arcsinx,ξ为f(x)在闭区间[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限.
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
用泰勒公式确定下列无穷小量当χ→0时关于χ的无穷小阶数:(Ⅰ)(Ⅱ)∫0χ(et-1-t)2dt.
随机试题
加压蒸汽灭菌法,通常在多大压力下达121.3℃
冠心病心绞痛的病机总属是
男性,78岁,既往患冠心病30余年,因寒热,大汗,在当地医院诊断疟疾,下列哪种药慎用
6个月以下小儿免疫预防接种不包括
我国《合同法》的规定,合同中下列( )免责条款无效。
(1997年)设a1=2,证明:级数收敛.
下列关于漏洞扫描技术和工具的描述中,错误的是()。
LanguagesinAmericaTheUnitedStatesis【T1】______anEnglishspeakingcountry.The【T2】______ofthepopulationspeaksEnglis
A、Sheshouldbecarefulabouthowtospendhermoney.B、Sheshouldnotbuythebrownsuit.C、Sheshouldthinkcarefullywhenshe
CambridgeUniversitycloseddowninthesummerof1665whentheplaguebrokeout.Newton,astudentthere,wenthometoLincoln
最新回复
(
0
)