首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=易所对应的齐次线性方程组,则下列结论正确的是( )
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=易所对应的齐次线性方程组,则下列结论正确的是( )
admin
2019-01-19
27
问题
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=易所对应的齐次线性方程组,则下列结论正确的是( )
选项
A、若Ax=0仅有零解,则Ax=b有唯一解。
B、若Ax=0有非零解,则Ax=b有无穷多个解。
C、若Ax=b有无穷多个解,则Ax=0仅有零解。
D、若Ax=b有无穷多个解,则Ax=0有非零解。
答案
D
解析
因为不论齐次线性方程组Ax=0的解的情况如何,即r(A)=n或r(A)
r(A)=r(A:b),
所以A、B两项均不正确。
而由Ax=b有无穷多个解可知,r(A)=r(A:b)
转载请注明原文地址:https://kaotiyun.com/show/JmP4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
设A是三阶实对称矩阵,特征值是1,0,一2,矩阵A的属于特征值1与一2的特征向量分别是(1,2,1)T与(1,一1,a)T,求Ax=0的通解.
设A、B都是n阶实对称矩阵,证明:存在正交矩阵P,使得P—1AP=B的充分必要条件是A与B有相同的特征多项式.
设n阶方阵A≠0,满足Am=0(其中m为某正整数).(1)求A的特征值.(2)证明:A不相似于对角矩阵.(3)证明:|E+A|=1.(4)若方阵B满足AB=BA,证明:|A+B|=|B|.
设两个线性方程组(I),(Ⅱ)为证明:方程组(I)有解的充分必要条件是方程组(Ⅱ)无解.
设A为三阶实对称矩阵,且存在可逆矩阵P=.(1)求a,b的值;(2)求正交变换x=Qy,化二次型f(x1,x2,x3)=XTA*x为标准形,其中A*为A的伴随矩阵;(3)若kE+A*合同于单位矩阵,求k的取值范围.
设A=.(1)若矩阵A正定,求a的取值范围.(2)若a是使A正定的正整数,求正交变换化二次型xTAx为标准形,并写出所用坐标变换.
二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的变换.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
已知二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2.a1,a2,…,an满足什么条件时f(x1,x2,…,xn)正定?
随机试题
下列何种原因引起的缺氧不属于循环性缺氧
甲有限责任公司为修改公司章程召开股东会议,关于本次股东会决议的表述正确的是()。
在Windows中,截取当前桌面,可以用________来实现。
张某通过房产经纪公司购买王某一套住房并办理了转让登记手续,后王某以房屋买卖合同无效为由,向法院起诉要求撤销登记行为。行政诉讼过程中,王某又以张某为被告就房屋买卖合同的效力提起民事诉讼。下列选项正确的是:(20l0年试卷二第99题)
在图1-3所示双代号时标网络计划中,如果C、E、H三项工作因共用一台施工机械而必须顺序施工,则该施工机械在现场的最小闲置时间为( )周。
《证券交易委托代理协议书》对于客户与证券经纪商来说是( )。
甲、乙、丙三人要装订语文和数学课本。装订语文课本的工作量比装订数学课本的工作量多少,甲、乙、丙三人单独完成数学课本的装订各需20天、24天和30天。为了共同完成这两项任务,先安排甲装订数学课本,乙、丙一起装订语文课本;经过几天后,又调丙去帮甲装订数学课本。
下列关于无向连通图特性的叙述中,正确的是____。I.所有顶点的度之和为偶数Ⅱ.边数大于顶点个数减1Ⅲ.至少有一个顶点的度为1
[*]
NOTICEThefourparkinggaragesforMansfieldTowerswillbeclosedatvarioustimesduringthelastthreeweeksofJunefor
最新回复
(
0
)