首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若y=e2x+(x+1)ex是方程y’’+ay’+by=cex的解,求a,b,c及该方程的通解。
若y=e2x+(x+1)ex是方程y’’+ay’+by=cex的解,求a,b,c及该方程的通解。
admin
2019-01-15
78
问题
若y=e
2x
+(x+1)e
x
是方程y
’’
+ay
’
+by=ce
x
的解,求a,b,c及该方程的通解。
选项
答案
方法一:将y=e
2x
+(x+1)e
x
及y
’
和y
’’
代入原方程比较系数得a=-3,b=2,c=-1。 方法二:由于y=e
2x
+(1+x)e
x
=e
2x
+e
x
+xe
x
为原方程的解,由所给方程的非齐次项f(x)=ce
x
知非齐次解中只会出现e
x
而不会出现e
2x
,则y
1
=e
2x
必为对应齐次方程的解。 xe
x
与e
x
中,若xe
x
是齐次解,λ=1为特征方程二重根,但λ=2已是一个根,故y
2
=e
x
为齐次方程解。 由齐次解y
1
=e
2x
,y
2
=e
x
知,齐次方程的特征方程为(λ-1)(λ-2)=0,即λ
2
-3λ+2=0,则齐次方程为y
’’
-3y
’
+2y=0。故a=-3,b=2。 将y=xe
x
,y
’
=e
x
+xe
x
,y
’’
=2e
x
+xe
x
代入方程y
’’
-3y
’
+2y=ce
x
得c=-1。 则所求方程的通解为y=C
1
e
x
+C
2
e
2x
+xe
x
,其中C
1
,C
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/JoP4777K
0
考研数学三
相关试题推荐
(16年)极限=_______.
(04年)设随机变量X的分布函数为其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本.(Ⅰ)当α=1时,求未知参数β的矩估计量;(Ⅱ)当α=1时,求未知参数β的最大似然估计量;(Ⅲ)当β=2时
(97年)一商家销售某种商品的价格满足关系P=7-0.2χ(万元/吨),χ为销售量(单位:吨),商品的成本函数是C=3χ+1(万元)(1)若每销售一吨商品,政府要征税t(万元),求该商家获最大利润时的销售量;(2)t为何值时,政府税收总
(95年)设某产品的需求函数为Q=Q(P),收益函数为R=PQ,其中P为产品价格,Q为需求量,(产品的产量),Q(P)是单调减函数.如果当价格为P0,对应产量为Q0时,边际收益=a>0,收益对价格的边际效应=c<0.需求对价格的弹性为Ep=b>1,求P0和
(16年)设函数f(u,v)可微,z=z(χ,y)由方程(χ+1)z-y2=χ2f(χ-z,y)确定,则dz|(0,1)=_______.
(15年)若函数z=z(χ,y)由方程eχ+2y+3z+χyz=1确定,则dz|(0,0)=_______.
(88年)已给线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解.
(11年)曲线tan(χ+y+)=ey在点(0,0)处的切线方程为_______.
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.
随机试题
属于口服片剂的有
求曲线y=lnx在区间(2,6)内一条切线,使得该切线与直线x=2,x=6和曲线y=lnx所围成的图形面积最小.
A.1×107~5×107CFU/m1,各次杀灭对数值≥5.00B.1×107~5×107CFU/片,各次杀灭对数值≥3.00C.1×106~5×106CFU/ml,各次杀灭对数值≥4.00D.1×106~5×106CFU/ml,各次杀灭对数值≥3.
患支原体肺炎时,以下哪项检查对诊断特异而灵敏
正常时脾静脉血流占门静脉血流的
诊断急性心肌梗死时特异性最高的检查是
上下级保护装置只要动作时间配合好,就可以保证选择性要求。()
保护耕地对于我国农业发展的最主要的意义是()
下列各句中,有语病的一句为:
Therearemanysimilaritiesbetweenchessandmathematicsasdisciplines,sothefindingsshredlightonwhywomenchessplayers
最新回复
(
0
)