首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2016-04-08
91
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
设F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)f(t)g’(t)dt一f(x)g(1),则F(x)在[0,1]上的导数连续,并且F’(x)=g(x)f’(x)-f’(x)g(1)=f’(x)[g(x)一g(1)],由于x∈[0,1]时,f’(x)≥0,g’(x)≥0,因此,F’(x)≤0,即F(x)在[0,1]上单调递减.注意到F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)g’(t)dt-f(1)g(1),而∫
0
1
g(t)f’(t)dt=∫
0
1
g(t)df(t)=g(t)f(t)|
0
1
-∫
0
1
f(t)f’(t)dt=f(1)g(1)一∫
0
1
f(t)g’(t)dt,故F(1)=0.因此x∈[0,1]时,F(x)≥F(1)=0,由此可得对任何a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/Jp34777K
0
考研数学二
相关试题推荐
设f(x)的一个原函数为lncosx,则=________.
设.证明:当n为奇数时,f(x)有且仅有一个零点;
设函数f(x)在x=0处可导,则等于().
设f’(x)在[0,1]上连续,且f’(x)≤M,证明:
设函数f(x),g(x)在[a,b]内二阶可导,g”(x)≠0,f(a)=g(a)=f(b)=g(b)=0,证明:存在ξ∈(a,b),使得
设有幂级数。求:(Ⅰ)该幂级数的收敛半径与收敛域:(Ⅱ)该幂级数的导数在收敛区间内的和函数。
求z=(1+x2+y2)xy的偏导数.
极限=________.
曲面上任一点处的切平面在三个坐标轴上的截距之和为().
设试讨论f(x)在x=0处的连续性和可导性。
随机试题
AReferenceLetterSupposeyouareProfessorWang.Forthispart,youareallowed30minutestowriteAReferenceLetterfor
A、乳剂型注射剂B、油溶液型注射剂C、混悬型注射剂D、水溶液型注射剂E、注射用无菌粉末青霉素G钠盐注射液属于
患者女性,28岁,外阴瘙痒伴白带增多3天。妇科检查:大量白色豆渣样浓稠白带,子宫双附件未见异常。关于本病例以下说法哪项不恰当
一般临床上开始听到胎心的时间是()。
A.聚乙烯吡咯烷酮溶液B.L一羟丙基纤维素C.乳糖D.乙醇E.聚乙二醇6000片剂的黏合剂()。
下列不是影响股票投资价值内部因素的是()。
样本大小适当的关键是样本要有()。
Chinawill"declarewar"inthebattleagainstpollution,PremierLiKeqiangsaidattheclosingoftheNationalPeople’sCong
赵某与钱某原本是好友,赵某受钱某之托,为钱某保管一幅名画(价值800万元)达3年之久。某日,钱某来赵某家取画时,赵某要求钱某支付10万元保管费,钱某不同意。赵某突然起了杀意,为使名画不被钱某取回进而据为己有,用花瓶猛砸钱某的头部,钱某头部受重伤后昏倒,不省
Apparentlyfirstdescribedin1964,transientglobalamnesiaconsistsofa(n)abruptlossofmemorylastingfromafewsecondsto
最新回复
(
0
)