首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r[α1,α2,…,αn,α,β1,β2,…,βn,β]=r,则( ).
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r[α1,α2,…,αn,α,β1,β2,…,βn,β]=r,则( ).
admin
2017-06-14
70
问题
已知r(A)=r
1
,且方程组AX=α有解,r(B)=r
2
,且BY=β无解,设A=[α
1
,α
2
,…,α
n
],B=[β
1
,β
2
,…,β
n
],且r[α
1
,α
2
,…,α
n
,α,β
1
,β
2
,…,β
n
,β]=r,则( ).
选项
A、r=r
1
+r
2
B、r>r
1
+r
2
C、r=r
1
+r
2
+1
D、r≤r
1
+r
2
+1
答案
D
解析
由题设
r[α
1
,α
2
,…,α
n
,α]=r
1
,r[β
1
,β
2
,…,β
n
,β]=r
2
+1,
故 r[α
1
,α
2
,…,α
n
,α,β
1
,β
2
,…,β
n
,β]≤r
1
+r
2
+1.故选D.
转载请注明原文地址:https://kaotiyun.com/show/Jpu4777K
0
考研数学一
相关试题推荐
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
若函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex,则f(x)=_________.
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设A,B为满足AB=0的任意两个非零矩阵,则必有
设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.A2;
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关;
已知矩阵和试判断矩阵A和刀是否相似,若相似则求出可逆矩阵P,使P-1AP=B,若不相似则说明理由.
随机试题
配制好的NaOH需贮存于()中。
与全身气虚关系最密切的是
楼梯平台处的净空高度最低不应小于( )m。
执业理财规划师违反职业道德规范,情节较为严重,但尚未给客户造成重大损失,行业自律机构的制裁措施应为()。
根据民事诉讼法律制度的规定,下列关于当事人的诉讼权利能力和诉讼行为能力的表述中,不正确的是()。
大气污染是指大气中的污染物或由它转化成的二次污染物的浓度达到了有害程度的现象。造成大气污染的主要物质是()。
不可能所有的湖南人都喜欢吃辣椒。以下哪项判断的含义与上述判断最为接近?()
简述公民民事权利能力的概念和特征。
Atthemoment,therearetworeliablewaystomakeelectricityfromsunlight.【F1】Youcanuseapanelofsolarcellstocreateth
OnasummereveningIwascaughtinthecrossfireofduelingwoodthrushes,eachdefendinghisportionoftheforest.Theirchos
最新回复
(
0
)