首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r[α1,α2,…,αn,α,β1,β2,…,βn,β]=r,则( ).
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r[α1,α2,…,αn,α,β1,β2,…,βn,β]=r,则( ).
admin
2017-06-14
37
问题
已知r(A)=r
1
,且方程组AX=α有解,r(B)=r
2
,且BY=β无解,设A=[α
1
,α
2
,…,α
n
],B=[β
1
,β
2
,…,β
n
],且r[α
1
,α
2
,…,α
n
,α,β
1
,β
2
,…,β
n
,β]=r,则( ).
选项
A、r=r
1
+r
2
B、r>r
1
+r
2
C、r=r
1
+r
2
+1
D、r≤r
1
+r
2
+1
答案
D
解析
由题设
r[α
1
,α
2
,…,α
n
,α]=r
1
,r[β
1
,β
2
,…,β
n
,β]=r
2
+1,
故 r[α
1
,α
2
,…,α
n
,α,β
1
,β
2
,…,β
n
,β]≤r
1
+r
2
+1.故选D.
转载请注明原文地址:https://kaotiyun.com/show/Jpu4777K
0
考研数学一
相关试题推荐
当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.
设对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
已知齐次线性方程组其中,试讨论a1,a2,…,an和b满足何种关系时,(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
如果0<β<α<π/2,证明
(2007年试题,24)设总体X的概率密度为X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.判断是否为θ2的无偏估计量,并说明理由.
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3ξ2+ξ3是否是A的特征向量?说明理由;
随机试题
男孩,5岁,洗澡时发现右腹部包块1个月。查体:右上腹包块,肋缘下3cm可及,质软。超声显示右肾严重积水,肾皮质厚度0.5cm。患儿不能配合静脉肾盂造影检查。在镇痛麻醉下经超声引导右肾盂穿刺造瘘及造影显示肾盂输尿管连接部狭窄,造瘘管引流尿量每天约400m
在划分地区管辖时,为什么要以犯罪地为主?
关于肾筋膜和肾周间隙的描述,错误的为
用于产后水肿尤宜的药物是
A、游离水杨酸B、游离肼C、洋地黄皂苷D、其他甾体E、酮体;以下药物中应检查的特殊杂质是异烟肼
在操场玩耍的过程中,9岁罗某不慎将6岁白某的胳膊弄伤,双方家长就赔偿问题发生争执,诉至人民法院本案中应确定()
某公园内有个奇怪的摊主小周,他只在星期一、星期二、星期三、星期五和星期六工作,而且他只出售4种商品:玩具汽车、充气气球、橡皮泥和遥控飞机。每个工作日,他上午只卖1种商品,下午只卖1种商品,而且还知道如下条件:(1)小周在而且只在两个连续的下午卖玩具汽车;
偶然打开电视,正播《西游记》中《三打白骨精》一折。剧情可以倒背如流,不知为什么竟看得入神,屏幕上晃动些什么,其实并不重要。看毕,我终于相信:一部《红楼梦》,政治家们当百科全书,才子佳人当恋爱指南这一真理。二十多年前,我还是个毛头小子。那时《孙悟空
Gotapenhandy?Tobestestimateyourstart-upcosts,you’llneedtomakealistandthemoredetailedthebetter.Asmartway
Thewordscienceisheardsoofteninmoderntimesthatalmosteverybodyhassomenotionofitsmeaning.Themeaningoftheterm
最新回复
(
0
)