首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. 求可逆矩阵P,使P—1AP为对角阵A.
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. 求可逆矩阵P,使P—1AP为对角阵A.
admin
2018-08-03
58
问题
设α=(a
1
,a
2
,…,a
n
)
T
为R
n
中的非零向量,方阵A=αα
T
.
求可逆矩阵P,使P
—1
AP为对角阵A.
选项
答案
A≠O.A
T
=A,1≤r(A)=r(αα
T
)≤r(α)=1,→r(A)=1,由于实对称矩阵的非零特征值的个数等于它的秩.故矩阵A只有一个非零特征值,而有n—1重特征值λ
1
=λ
2
=…=λ
n—1
=0.A的属于特征值0的线性无关特征向瞳可取为(设a
1
≠0): ξ
1
=(一[*],1,0,…,0)
T
,ξ
2
=(一[*],0,1,…,0)
T
,…,ξ
n—1
=(一[*],0,0,….1)
T
;属于特征值λ
n
=[*]a
i
2
的特征值为α,令矩阵P=[ξ
1
ξ
2
… ξ
n—1
α],则有P
—1
AP=diag(0,0,…,0,[*]a
i
2
)对角阵.其中,λ
n
的求法可利用特征值的性质:λ
1
+λ
2
+…+λ
n—1
+λ
n
=(A的主对角线元素之和)[*]a
i
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jrg4777K
0
考研数学一
相关试题推荐
设总体X~N(0,8),Y~N(0,22),且X1及(Y1,Y2)分别为来自上述两个总体的样本,则~___________。
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布.商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元,计算此商店经销该种商品每周所
设矩阵A=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值,(2)判断A可否对角化.
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设随机变量X~B(1,),Y~E(1),且X与Y相互独立.记Z=(2X一1)Y,(Y,Z)的分布函数为F(y,z).试求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
设f(x0)≠0,f(x)在x=x0连续,则f(x)在x0可导是|f(x)|在x0可导的()条件.
证明二次型xTAx正定的充分必要条件是A的特征值全大于0.
随机试题
A.烃类基质B.水溶性基质C.类脂类基质D.油脂类基质E.硅酮类基质纤维素衍生物
一山羊放牧时摔倒,被一锈铁丝划伤,伤口较深。数天后伤口周围出现水肿和剧痛,创面分泌出红褐色、带有气泡的恶臭液体,创内组织呈褐色;病羊体温升高,全身症状显著。处理该创口时,最有效的药物是
患儿12岁,被暴打达8小时之久,其后突发少尿,神志不清。检查:血中尿素氮50mg/dl,肌酐5mg/dl,其肾脏的变化是
将大小为100N的力F沿x、y方向分解,若F在x轴上的投影为50N,而沿x方向的分力的大小为200N,则F在y轴上的投影为()。
经营规模小。确无建账能力的业户,经()批准,可暂不建账或不设置账簿。
证券投资的系统风险不包括()。
()是遗传决定论的代表人物。
下列名人与其关于教师的说法,对应不正确的是()。
树木枝干和许多植物的茎秆通常含有大量难以分解的木质素,因此利用它们来提炼生物燃料的效率要大打折扣。目前,人们发现了一种名为红球菌的细菌,它具有分解木头和其他植物巾木质素的能力,因此,人们认为可以将红球菌广泛用于以往大都废弃的茎秆,从而大大提高生物燃料的利用
WhatwasthepurposeofJoe’sskateboardjourney?
最新回复
(
0
)