首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. 求可逆矩阵P,使P—1AP为对角阵A.
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. 求可逆矩阵P,使P—1AP为对角阵A.
admin
2018-08-03
38
问题
设α=(a
1
,a
2
,…,a
n
)
T
为R
n
中的非零向量,方阵A=αα
T
.
求可逆矩阵P,使P
—1
AP为对角阵A.
选项
答案
A≠O.A
T
=A,1≤r(A)=r(αα
T
)≤r(α)=1,→r(A)=1,由于实对称矩阵的非零特征值的个数等于它的秩.故矩阵A只有一个非零特征值,而有n—1重特征值λ
1
=λ
2
=…=λ
n—1
=0.A的属于特征值0的线性无关特征向瞳可取为(设a
1
≠0): ξ
1
=(一[*],1,0,…,0)
T
,ξ
2
=(一[*],0,1,…,0)
T
,…,ξ
n—1
=(一[*],0,0,….1)
T
;属于特征值λ
n
=[*]a
i
2
的特征值为α,令矩阵P=[ξ
1
ξ
2
… ξ
n—1
α],则有P
—1
AP=diag(0,0,…,0,[*]a
i
2
)对角阵.其中,λ
n
的求法可利用特征值的性质:λ
1
+λ
2
+…+λ
n—1
+λ
n
=(A的主对角线元素之和)[*]a
i
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jrg4777K
0
考研数学一
相关试题推荐
设X1,…,X9为来自正态总体X~N(μ,σ2)的简单随机样本,令证明:Z~t(2).
证明:
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ—η=(ea+eb)[f’(η)+f(η)].
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)一2ex|≤(x一1)2,研究函数f(x)在x=1处的可导性.
设矩阵A=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值,(2)判断A可否对角化.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:y=.(1)求点M,使得L在M
设二维离散型随机变量只取(一1,一1),(一1,0),(1,一1),(1,1)四个值,其相应概率分别为(Ⅰ)求(X,Y)的联合概率分布;(Ⅱ)求关于X与关于Y的边缘概率分布;(Ⅲ)求在Y=1条件下关于X的条件分布与在X=1条件下关于Y的条件分布.
证明二次型xTAx正定的充分必要条件是A的特征值全大于0.
已知λ=12是A=的特征值,则a=_________;
随机试题
驾驶机动车遇到这种情况要靠右侧停车等待。
当旧的经济关系日益腐朽,新的经济关系日益形成时,旧的道德体系也必将为新的道德体系所代替。人们的道德水平必然随着社会实践由低级到高级的发展而不断进步。这说明【】
日本血吸虫:中华支睾吸虫:
女性,26岁。间歇性牙龈出血伴月经过多1年。体检:双下肢可见散在出血点及紫癜,肝脾不大。血红蛋白120g/L,红细胞4.6×1012/L,白细胞5.5×109/L,分类正常,血小板25×109/L。特发性血小板减少性紫癜诊断要点不包括
十二指肠癌较罕见发生在哪段?()。
根据《中华人民共和国水污染防治法》对饮用水水源保护区的有关规定,下列说法中正确的是()。
我国地貌景观可分为花岗岩山地、岩溶山水、丹霞地貌等等,下列哪一组景观是上述三种地貌景观的典型代表()。
一线贯通是公文中显示主旨的方法之一,指的是主旨分散于一篇文章各个部分的小标题、小观点或者是条旨句、段旨句中,起一个穿针引线、提纲挈领的作用。()
[*]
HereIwanttotrytogiveyouananswertothequestion:whatpersonalqualitiesare【C1】______inateacher?Probablynotwope
最新回复
(
0
)