首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. 求可逆矩阵P,使P—1AP为对角阵A.
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. 求可逆矩阵P,使P—1AP为对角阵A.
admin
2018-08-03
22
问题
设α=(a
1
,a
2
,…,a
n
)
T
为R
n
中的非零向量,方阵A=αα
T
.
求可逆矩阵P,使P
—1
AP为对角阵A.
选项
答案
A≠O.A
T
=A,1≤r(A)=r(αα
T
)≤r(α)=1,→r(A)=1,由于实对称矩阵的非零特征值的个数等于它的秩.故矩阵A只有一个非零特征值,而有n—1重特征值λ
1
=λ
2
=…=λ
n—1
=0.A的属于特征值0的线性无关特征向瞳可取为(设a
1
≠0): ξ
1
=(一[*],1,0,…,0)
T
,ξ
2
=(一[*],0,1,…,0)
T
,…,ξ
n—1
=(一[*],0,0,….1)
T
;属于特征值λ
n
=[*]a
i
2
的特征值为α,令矩阵P=[ξ
1
ξ
2
… ξ
n—1
α],则有P
—1
AP=diag(0,0,…,0,[*]a
i
2
)对角阵.其中,λ
n
的求法可利用特征值的性质:λ
1
+λ
2
+…+λ
n—1
+λ
n
=(A的主对角线元素之和)[*]a
i
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jrg4777K
0
考研数学一
相关试题推荐
当x>0时,证明:
设f(x)在[a,+∞)上连续,且存在.证明:f(x)在[a,+∞)上有界.
设X和Y分别表示扔n次硬币出现正面和反面的次数,则X,Y的相关系数为().
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
f(x)在[_一1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设X1,X2,…,X12是取自总体X的一个简单随机样本,EX=μ,DX=σ.记Y1=X1+…+X8,Y2=X5+…+X12,求Y1与Y2的相关系数.
经过两个平面∏1:x+y+1=0,∏2:x+2y+2z=0的交线,并且与平面∏3:2x-y-z=0垂直的平面方程是__________.
已知二次型f(x1,x2,x3)=(1一a)+2(1+a)x1x2的秩为2.(Ⅰ)求a的值;(Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形;(Ⅲ)求方程f(x1,x2,x3)=0的解.
随机试题
Longtimeago,everyoneknewthatregularbedtimeswereimportant."Dreamon!"mostmodernparentsmightreply.Butresearchby
A、Shehasbadreactiontopenicillin.B、Hersymptomsdon’trelieveatallafteraweek.C、Shefeelsburninganditchingonhers
一个理想的克隆载体应有的特性
以下关于流行性感冒病毒的叙述错误的是
(2015年)对下列哪些拟作出的决定,行政机关应告知当事人有权要求听证?
企业投资建设《政府核准的投资项目目录》中的项目时,需向政府提交()。
李先生2013年1月1日与该市的金鑫钢铁铸造厂签订承包合同,经营期限10年,承包费每年20万元。合同规定,承包期内不得改变名称,仍以金鑫钢铁铸造厂的名义对外从事经营业务,李先生对经营成果享有所有权,上缴的承包费在每年的经营成果中支付。该企业为增值税一般纳税
技能形成的基本途径是
下列各句中表意明确、没有歧义的一项是:
Whatcanwelearnfromthenews?
最新回复
(
0
)