首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=|(x一1)(x一2)2(x一3)3|,则导数f’(x)不存在的点的个数是( )
设f(x)=|(x一1)(x一2)2(x一3)3|,则导数f’(x)不存在的点的个数是( )
admin
2019-02-01
53
问题
设f(x)=|(x一1)(x一2)
2
(x一3)
3
|,则导数f’(x)不存在的点的个数是( )
选项
A、0。
B、1。
C、2。
D、3。
答案
B
解析
考查带有绝对值的函数在x
n
点处是否可导,可以借助如下结论。
设f(x)为可导函数,则
①若f(x
0
)≠0,且f(x)在x
0
处可导,则|f(x)|在x
0
处可导;
②若f(x
0
)=0,且f’(x
0
)=0,则|f(x)|在x
0
处可导;
③若f(x
0
)=0,且f’(x
0
)≠0,则|f(x)|在x
0
处不可导。
设φ(x)=(x一1)(x一2)
2
(x一3)
3
,则f(x)=|φ(x)|。f’(x)不存在的点就是f(x)不可导的点,根据上述结论可知,使φ(x)=0的点x
1
=1,x
2
=2,x
3
=3可能为不可导点,故只需验证φ’(x
i
)(i=1,2,3)是否为零即可,而φ’(x)=(x一2)
2
(x一3)
2
+2(x一1)(x一2)(x一3)
3
+3(x一1)(x一2)
2
(x一3)
3
,显然,φ’(1)≠0,φ’(2)=0,φ’(3)=0,所以只有一个不可导点x=1。故选B。
转载请注明原文地址:https://kaotiyun.com/show/Juj4777K
0
考研数学二
相关试题推荐
求不定积分.
设向量组(I)α1,α2,…,αs线性无关,(II)β1,β2,…,βs线性无关,且αi(i=1,2,…,s)不能由(II)β1,β2,…,βs线性表出,βi(i=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1
设向量组(I)与向量组(Ⅱ),若(I)可由(Ⅱ)线性表示,且r(I)=r(Ⅱ)=r,证明:(I)与(Ⅱ)等价.
计算积分:已知f(x)=求∫2n2n+2(x一2n)e一xdx,n=2,3,….
求心彤线r=a(1+cosθ)的全长,其中a>0是常数.
设f(χ)有连续导数,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt且当χ→0时,F′(χ)与χk是同阶无穷小,则k等于【】
设f(u,v)具有二阶连续偏导数,且满足f′u(u,v)+f′v(u,v)=uv求y=e-2χf(χ,χ)所满足的一阶微分方程_______,并求其通解为_______.
设f(x)在区间[a,b]上二阶可导且f’’(x)≥0.证明:
已知A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于()
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
随机试题
A、β受体B、α受体C、N2胆碱受体D、N1胆碱受体E、M胆碱受体阿托品主要阻断
甲因住院急需手术费,向乙借钱。乙表示甲必须将住房卖给乙,才借钱给甲。甲无奈只得同意,与乙签订了卖房协议。以下说法不正确的是( )。
劳务分包应实施实名制管理,其执行主体是()和项目部。
下列法的形式中,效力等级最低的是()。
油画作品《雅典学院》歌颂了人类对智慧和真理的追求,其作者是()
Videogameshavebecomeincreasinglyrealistic,especiallythoseinvolvingarmedcombat.America’sarmedforceshaveevenused
Pleasejoinus.Wecaneasilymake______foronemoreatthistable.
"ResourcesandIndustrialisminCanada"→Whilethemuch-anticipatedexpansionofthewesternfrontierwasunfoldinginacco
Whatdoesthemando?
A、He’sexplainingthelanguagelaboratory.B、HewantstoknowWherethetapesare.C、He’sshowingheranewtaperecorder.D、He’
最新回复
(
0
)