首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知λ1=6,λ2=λ3=3是实对称矩阵A的三个特征值.且对应于λ2=λ3=3的特征向量为a2=(-1,0,1)T,a3=(1,-2,1)T,求A对应于λ1=6的特征向量及矩阵A.
已知λ1=6,λ2=λ3=3是实对称矩阵A的三个特征值.且对应于λ2=λ3=3的特征向量为a2=(-1,0,1)T,a3=(1,-2,1)T,求A对应于λ1=6的特征向量及矩阵A.
admin
2013-09-15
112
问题
已知λ
1
=6,λ
2
=λ
3
=3是实对称矩阵A的三个特征值.且对应于λ
2
=λ
3
=3的特征向量为a
2
=(-1,0,1)
T
,a
3
=(1,-2,1)
T
,求A对应于λ
1
=6的特征向量及矩阵A.
选项
答案
这是已知全部特征值和部分特征向量反求矩阵A的问题.关键在于利用已知条件中A为对称矩阵,而对称矩阵属于不同特征值的特征向量正交,依此即可求解. 设A对应于λ
1
=6的特征向量是a
1
=[x
1
,x
2
,x
3
]
T
,由于实对称矩阵属于不同特征值的特征向量彼此正交,故有(a
1
T
,a
2
)=(a
1
T
,a
3
)=0,即[*] 解得a
1
=x
2
=x
3
,取a
1
:(1,1,1)
T
,即是矩阵A属于λ
1
=6的特征向量. 进一步,由A(a
1
,a
2
,a
3
)=(λ
1
a
1
,λ
2
a
2
,λ
3
a
3
),得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/MB34777K
0
考研数学二
相关试题推荐
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系()
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的数λ1,…,λm和k1,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则()
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则()
(1998年)设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.试证存在ξ,η∈(a,b),使得
(00年)设函数f(χ)在[0,π]上连续,且∫0πf(χ)dχ=0,∫0πf(χ)cosχdχ=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
设A,B是二随机事件,随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.
(03年)设函数f(χ)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3)使f′(ξ)=0.
(91年)试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
随机试题
economicglobalization
患者,男,45岁。暴饮暴食后出现上腹阵发性疼痛,并伴有腹胀、恶心、呕吐。呕吐物为宿食,停止肛门排气,患者半年前曾做过阑尾切除术。体检:腹胀、软,见肠型,轻度压痛,肠鸣音亢进。该患者出现肠梗阻,最可能的原因为
牛黄的功效是
对脑干损害有定位意义的体征是()
“十二五”时期,要加快发展现代农业,坚持走中国特色农业现代化道路,把保障()作为首要目标,加快转变农业发展方式,提高农业综合生产能力、抗风险能力和市场竞争能力。
地陪应在旅客抵达饭店后尽快办理入店手续,在游客进入房间前,地陪要向其介绍饭店的就餐形式、地点、时间。游客到餐厅的第一餐,地陪应主动引进。()修改:___________________________________
二十世纪二十年代,中国共产党在江西领导的主要革命斗争(运动)有()。
简要分析如何坚持开放发展。
Ifyouhaveeverwonderedhowanelephantsmells,scientistshavetheanswer.ResearchershavediscoveredthatAfricanElephants
Areyouinterested______tennis?
最新回复
(
0
)