首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知λ1=6,λ2=λ3=3是实对称矩阵A的三个特征值.且对应于λ2=λ3=3的特征向量为a2=(-1,0,1)T,a3=(1,-2,1)T,求A对应于λ1=6的特征向量及矩阵A.
已知λ1=6,λ2=λ3=3是实对称矩阵A的三个特征值.且对应于λ2=λ3=3的特征向量为a2=(-1,0,1)T,a3=(1,-2,1)T,求A对应于λ1=6的特征向量及矩阵A.
admin
2013-09-15
148
问题
已知λ
1
=6,λ
2
=λ
3
=3是实对称矩阵A的三个特征值.且对应于λ
2
=λ
3
=3的特征向量为a
2
=(-1,0,1)
T
,a
3
=(1,-2,1)
T
,求A对应于λ
1
=6的特征向量及矩阵A.
选项
答案
这是已知全部特征值和部分特征向量反求矩阵A的问题.关键在于利用已知条件中A为对称矩阵,而对称矩阵属于不同特征值的特征向量正交,依此即可求解. 设A对应于λ
1
=6的特征向量是a
1
=[x
1
,x
2
,x
3
]
T
,由于实对称矩阵属于不同特征值的特征向量彼此正交,故有(a
1
T
,a
2
)=(a
1
T
,a
3
)=0,即[*] 解得a
1
=x
2
=x
3
,取a
1
:(1,1,1)
T
,即是矩阵A属于λ
1
=6的特征向量. 进一步,由A(a
1
,a
2
,a
3
)=(λ
1
a
1
,λ
2
a
2
,λ
3
a
3
),得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/MB34777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
下列矩阵中,与矩阵相似的为()
(11年)设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记则A=【】
设n阶矩阵A与B等价,则必有()
(00年)设函数f(χ)在[0,π]上连续,且∫0πf(χ)dχ=0,∫0πf(χ)cosχdχ=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(1998年)设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.试证存在ξ,η∈(a,b),使得
设A为m×n实矩阵,E为n阶单位矩阵。已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵。
设A,B是二随机事件,随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.
(03年)设函数f(χ)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3)使f′(ξ)=0.
[2003年]设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3),使f’(ξ)=0.
随机试题
_______适用于所有的报表或窗体,其他报表也使用当前的设置值,所有窗体或报表的页面只需要设置一次。
指导性计划
中低熔合金包埋材适用于
关于开标程序的说法,正确的是()。
不定期清查一般是在( )时进行。
设备报废的条件包括()等。
临时救助:指家庭或个人遭遇突发事件、意外伤害、重大疾病等变故,基本生活陷入困境时,政府有关部门提供的应急性、过渡性救助。下列属于临时救助的是()。
某公司2007年7月1日以448000元的价格,购人准备持有至到期的A公司发行在外的债券2000张,另支付相关税费1000元,该债券是2007年1月1日发行的、面值200元、每半年付息一次、票面利率为8%的五年期债券,该项持有至到期投资的初始成本是(
有人认为:包括费尔巴哈在内的一切旧唯物主义的主要缺点在于,他们不是从主体方面去理解唯物主义,这种对旧唯物主义的评论属于( )
有以下程序:#include<stdio.h>voidfun1(char*p){char*q;q=p;while(*q!=’\0’){(*q)++;q++;}}main(){chara[]={"Program"},*p;
最新回复
(
0
)