首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年试题,一)设函数f(x)在(0,+∞)上具有二二阶导数,且fn(x)>0-令un=f(n)=1,2,…,n,则下列结论正确的是( ).
(2007年试题,一)设函数f(x)在(0,+∞)上具有二二阶导数,且fn(x)>0-令un=f(n)=1,2,…,n,则下列结论正确的是( ).
admin
2013-12-18
86
问题
(2007年试题,一)设函数f(x)在(0,+∞)上具有二二阶导数,且f
n
(x)>0-令u
n
=f(n)=1,2,…,n,则下列结论正确的是( ).
选项
A、若u
1
>u
2
,则{u
n
}必收敛
B、若u
1
>u
2
,则{u
n
}必发散
C、若u
1
<u
2
,则{u
n
}必收敛
D、若u
1
<u
2
,则{u
n
}必发散
答案
D
解析
因f
n
(x)>1,故f
’
(在(0,+∞)上单调递增.若u
1
<u
2
,则
>0,ξ∈(1,2),即n>2时,必有f
’
(n)>f
’
(ξ)>0,即u
n
=f(n)单调递增,且随n的增大,f
’
(n)增大f(n)增长得更快,故而发散.所以应选D.
转载请注明原文地址:https://kaotiyun.com/show/K134777K
0
考研数学二
相关试题推荐
(16年)设函数f(χ)在(-∞,+∞)内连续,其导函数的图形如图所示,则【】
(05年)当a取下列哪个值时,函数f(χ)=2χ3-9χ2+12χ-a恰有两个不同的零点.【】
设A为3阶实对称矩阵,且满足条件A2+2A=O,A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
(11年)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,α
设矩阵A=,β=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
设正数列{an}满足a1=a2=1,an=an-1+a2,n=3,4,5,…,且已知某常数项级数的部分和为Sn=(1/2)+(1/22)+(2/23)+(3/24)+(5/25)+(8/26)+(13/27)+(an-1/2n-1)+(an/2n
设由曲线,nπ≤x≤(n+1)π,n=1,2,3,…与x轴所围成区域绕y轴旋转所得的体积为vn,并记以其为通项的数列为{1},则下列说法正确的是()。
已知f(x)是微分方程xf′(x)-f(x)=满足初始条件f(1)=0的特解,则f(x)dx=__________.
设钢管内径X服从正态分布N(μ,σ2),规定内径在98到102之间的为合格品;超过102的为废品,不是98的为次品.已知该批产品的次品率为15.9%,内径超过101的产品在总产品中占2.28%,求整批产品的合格率.
(1999年试题,五)求初值问题,的解.
随机试题
下列对低压供配电方式的描述中,不正确的是()。
口蹄疫疫区封锁后,疫点内最后一头患畜扑杀后(),无新病例出现,方可解除封锁。
用实物法编制施工图预算时,紧接“计算工程量”之后的步骤是( )。
消防工程验收时,施工单位应提交的资料有()。
关于挖孔灌注桩施工技术要求的说法,正确的是()。
从事证券相关业务的会计师事务所、审计师事务所必须具有10名以上取得证券、期货相关业务资格考试合格证书或者已经取得许可证的注册会计师(不含分支机构注册会计师)。()
只要符合( )的客户,可认定为中银理财客户。
学校不得使未成年学生在危及人身安全、健康的校舍和其他教育教学设施中活动,否则就是没有保护学生的()。
社会物质生活条件即社会存在,包括_____________、______________和______________________。
以下程序的功能是计算:s=1+12+123+1234+12345。请填空。main(){intt=0,s=0,i;for(i=1;i<=5;i++){t=i+();s=s+t;}printf("s=%
最新回复
(
0
)