首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
admin
2020-04-30
60
问题
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
选项
答案
设F(x)=f(x)-x,则F(x)在[0,1]上连续. 由于0<f(x)<1,所以 F(0)=f(0)>0,F(1)=f(1)-1<0, 由介值定理知,在(0,1)内至少存在一点ξ,使F(ξ)=0,即f(ξ)=ξ. 假设有两个x
1
,x
2
∈(0,1),且x
1
≠x
2
,使F(x
1
)=F(x
2
)=0,则由罗尔定理,存在η∈(0,1),使f’(η)=f’(η)-1=0,这与f’(x)≠1矛盾,故f(x)=x有且仅有一个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/K9v4777K
0
考研数学一
相关试题推荐
设A,B为n阶矩阵,且A,B的特征值相同,则().
已知β1,β2是非齐次线性方程组Aχ=b的两个不同的解,α1,α2是对应的齐次线性方程Aχ=0的基础解系,k1,k2为任意常数,则方程组Aχ=b的通解是()
设向量组(Ⅰ):α1(a11,a12,a13),α2=(a21,a22,a23),α3=(a31,a32,a33);向量组(Ⅱ):β1=(a11,a12,a13,a14),β2=(a21,a22,a23,a24),β3=(a31,a32,a33,a34,)
若f(x)在开区间(a,b)内可导,且x1,x2是(a,b)内任意两点,则至少存在一点ξ,使下列诸式成立的是()
设A=,方程组Ax=0有非零解。α是一个三维非零列向量,若Ax=0的任一解向量都可由α线性表出,则a=()
设X1,X2,X3,X4是来自总体X~N(1,2)的简单随机样本,且服从χ2(n)分布,则常数k和χ2分布的自由度n分别为().
设y=y(x)是二阶线性常系数非齐次微分方程y’’+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限=()
设A是3阶矩阵,且有3个互相正交的特征向量,证明A是对称矩阵.
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
证明S(x)=满足微分方程y(4)一y=0并求和函数S(x).
随机试题
采用拼组机床加工大型零件,具有的主要特点有()。
我国安全的生产方针是:"安全第一、预防为主"。
文字起源于()
下列检查中,哪一项对鉴别单纯性与绞窄性肠梗阻最有帮助()
不属于神经反射检查的内容是()
根据《中华人民共和国水土保持法》,修建铁路、公路和水工程时必须采取的防止水土流失措施有()。
某保险公司计划推出一项医疗保险,对象是60岁以上经体检无重大疾病的老年人。投保者在有生之年如果患心血管疾病或癌症,则其医疗费用的90%将由保险公司赔付。为了吸引投保者,保险金又不能定得太高。有人估计保险金将不足以支付赔付金,因而会是个赔本生意。尽管如此,保
Ifyousmoke,nooneneedstotellyouhowbaditis.Sowhyhaven’tyouquit?Whyhasn’teveryone?Becausesmokingfeelsgo
有以下程序main(){intx=1,y=0,a=0,b=0;switch(x){case1:switch(y){case0:a++:break;case1:b++;break;}case2:a++;b++;break;case3:a++;
Franklyspeaking,I’dratheryou(make)______nocommentontheissueattheconferenceyesterday.
最新回复
(
0
)