首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
admin
2020-04-30
62
问题
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
选项
答案
设F(x)=f(x)-x,则F(x)在[0,1]上连续. 由于0<f(x)<1,所以 F(0)=f(0)>0,F(1)=f(1)-1<0, 由介值定理知,在(0,1)内至少存在一点ξ,使F(ξ)=0,即f(ξ)=ξ. 假设有两个x
1
,x
2
∈(0,1),且x
1
≠x
2
,使F(x
1
)=F(x
2
)=0,则由罗尔定理,存在η∈(0,1),使f’(η)=f’(η)-1=0,这与f’(x)≠1矛盾,故f(x)=x有且仅有一个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/K9v4777K
0
考研数学一
相关试题推荐
设随机变量X~N(μ,σ2),σ>0,其分布函数F(x)的曲线的拐点为(a,b),则(a,b)为()
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则
设f(x),g(y)都是可微函数,则曲线在点(x0,y0,z0)处的法平面方程为_______
若f(x)在开区间(a,b)内可导,且x1,x2是(a,b)内任意两点,则至少存在一点ξ,使下列诸式成立的是()
设X1,X2,X3,X4是来自总体X~N(1,2)的简单随机样本,且服从χ2(n)分布,则常数k和χ2分布的自由度n分别为().
设Ω={(x,y,z)|x2+y2≤z≤1},则Ω的形心的竖坐标=_________.
设∑为平面y+z=5被柱面x2+y2=25所截得的部分,则曲面积分I=(x+y+z)dS=_______.
设x3一3xy+y3=3确定y为x的函数,求函数y=y(x)的极值点.
设{nan}收敛,且n(an-an-1)收敛,证明:级数an收敛.
设其中a1,a2,…,an是两两不同的一组常数,则线性方程组ATx=B的解是________.
随机试题
行车中当驾驶人意识到机动车爆胎时,应在控制住方向的情况下采取紧急制动,迫使机动车迅速停住。
下列关于Internet网中主机、IP地址和域名的叙述,错误的是________。
β受体阻滞剂治疗心绞痛的机制包括
下列主要用于表面麻醉的药是
下列何项是青春期开始的重要标志( )
张三、李四、王五、赵六、周七五人为研究生同学,2010年7月份研究生毕业时,五人商议欲创立一家经营法律类图书的英杰有限责任公司。五人订立了设立公司的协议,约定张三以2010年6月份依据遗嘱继承的其祖父所留给他的临街的一处二层商业房作为出资;李四以货币10万
甲企业向乙银行申请贷款,约定还款日期为2020年12月30日。丙企业为该债务提供了保证担保,但未约定保证方式和保证期间。后甲企业申请展期,与乙银行就还款期限作了变更,还款期限延至2021年12月30日,但未征得丙企业的书面同意。展期到期,甲企业无力还款,乙
以下旅游资源是按功能分类的有()
____________。中国人在太空迈出的每一步,都是科技创新的坚实足印。没有创新驱动,就不会有航天工程的突飞猛进;没有创新驱动,就不会有空间技术、空间应用和空间科学的蓬勃发展。尊重科学、追求卓越,这是中国航天精神,更是大众创业、万众创新背景下转型升级的
五代花鸟画家黄筌和徐熙分别创造了不同的绘画风格,人称“黄家富贵,_______。”
最新回复
(
0
)