首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1﹢bα4,aα2﹢bα3,aα3﹢bα2,aα4﹢bα1也是Ax=0的基础解系的充分必要条件是 ( )
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1﹢bα4,aα2﹢bα3,aα3﹢bα2,aα4﹢bα1也是Ax=0的基础解系的充分必要条件是 ( )
admin
2018-12-21
56
问题
已知n维向量组α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的基础解系,则向量组aα
1
﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
也是Ax=0的基础解系的充分必要条件是 ( )
选项
A、a=b.
B、a≠-b.
C、a≠b.
D、a≠±b.
答案
D
解析
向量组aα
1
﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
均是Ax=0的解,且共4个,故该向量组是Ax=0的基础解系
该向量组线性无关.因(aα
1
l﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
)=(α
1
,α
2
,α
3
,α
4
)
且α
1
,α
2
,α
3
,α
4
线性无关,则aα
1
﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
线性无关
=(a
2
-b
2
)≠0
a≠±b.
故应选(D).
(B),(C)是充分条件,并非必要,(A)既非充分又非必要,均应排除.
转载请注明原文地址:https://kaotiyun.com/show/KAj4777K
0
考研数学二
相关试题推荐
(2014年)一根长为1的细棒位于χ轴的区间[0,1]上,若其线密度ρ(χ)=-χ2+2χ+1,则该细棒的质心坐标=_______.
(1998年)设有曲线y=,过原点作其切线,求由此曲线、切线及χ轴围成的平面图形绕χ轴旋转一周所得旋转体的表面积.
(2002年)=_______.
(2010年)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A相似于【】
(1999年)“对任意给定ε∈(0,1),总存在正整数N,当,n>N时,恒有|χn-a|≤2ε”是数列{χn}收敛于a的【】
(2002年)设y=y(χ)是二阶常系数微分方程y〞+py′+qy=e3χ满足初始条件y(0)=y′(0)=0的特解,则当χ→0时,函数的极限.【】
(1993年)设f′(χ)在[0,a]上连续,且f(0)=0,证明
(2003年)若χ→0时,-1与χsinχ是等价无穷小,则a=_______.
求方程=(1一y2)tanx的通解以及满足y(0)=2的特解.
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
随机试题
男,28岁。发现左颈外侧一无痛性肿块,约2.3cm×2.0cm×1.8cm大小,无压痛,活动,为明确诊断,最有价值的检查方法是()
可引起眼裂变小的病征有
工程项目不包括()。
在Word的编辑状态,使插入点快速移到文档首部的快捷键是( )。
规范的()标志着相应品德的形成
欧洲中世纪的宗教神学课程和工业革命后的以自然科学为基础的课程属于课程类别中的()
某上市公司每10股派发现金红利1.50元,同时按10配5的比例向现有股东配股,配股价格为6.40元。若该公司股票在除权除息日前收盘价为11.05元,则除权(息)报价应为()
设f(x)在x=0的邻域内有定义,且f(0)=0,则f(x)在x=0处可导的充分必要条件是().
A、Therehasbeenasteadygrowth.B、AlluniversitiesbegintoofferdegreecoursesinChinesemedicine.C、Manypeoplehavefound
Oneofthemostcommonhumanfearsisscarcity.Manypeopleareafraidofnothavingenoughofwhattheyneedorwant,andsoth
最新回复
(
0
)