首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1﹢bα4,aα2﹢bα3,aα3﹢bα2,aα4﹢bα1也是Ax=0的基础解系的充分必要条件是 ( )
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1﹢bα4,aα2﹢bα3,aα3﹢bα2,aα4﹢bα1也是Ax=0的基础解系的充分必要条件是 ( )
admin
2018-12-21
45
问题
已知n维向量组α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的基础解系,则向量组aα
1
﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
也是Ax=0的基础解系的充分必要条件是 ( )
选项
A、a=b.
B、a≠-b.
C、a≠b.
D、a≠±b.
答案
D
解析
向量组aα
1
﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
均是Ax=0的解,且共4个,故该向量组是Ax=0的基础解系
该向量组线性无关.因(aα
1
l﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
)=(α
1
,α
2
,α
3
,α
4
)
且α
1
,α
2
,α
3
,α
4
线性无关,则aα
1
﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
线性无关
=(a
2
-b
2
)≠0
a≠±b.
故应选(D).
(B),(C)是充分条件,并非必要,(A)既非充分又非必要,均应排除.
转载请注明原文地址:https://kaotiyun.com/show/KAj4777K
0
考研数学二
相关试题推荐
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βr线性表示,则【】
(2004年)等于【】
(2008年)设A=,则在实数域上与A合同的矩阵为【】
(1991年)若连续函数f(χ)满足关系式f(χ)=∫02χf()dt+ln2则f(χ)等于
(1989年)微分方程y〞-y=eχ+1的一个特解应具有形式(式中a,b为常数)【】
(1991年)曲线y=(χ-1)(χ-2)和χ轴围成一平面图形,求此平面图形绕y轴旋转一周所成的旋转体的体积.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设矩阵A和B满足关系式AB=A+2B,其中A=,求矩阵B.
如图8.12所示.[*]原式=[*]
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
随机试题
Everythinglivingonearth--plantsandanimalsneedotherlivingthings.Nothinglivesalone.Mostanimalsmustliveinagroup,
Somepeoplesaythatthebestwaytoreducethebody’smid-sectionistodostomachexercise.Manypeoplebelievethatwhenspec
下列中哪一条不符合汽车库、修车库室内疏散楼梯的要求?
()在货物采购合同中是重要条款,也是货物验收和区分责任的依据。
下列不能成为经济法律关系客体的是()。
本量利分析遵守的原则有()等。
京剧脸谱的勾画用色非常鲜明,这些色彩在应用过程中赋予了象征性的含义。下列脸谱颜色与京剧人物性格对应错误的是()。
A、 B、 C、 D、 C
Atmstrong公理系统中有一条推理规则为:若X→Y为F所逻辑蕴涵,且,则XZ→YZ为F所逻辑蕴涵。这条推理规则称作【】。
Thefirstmoving-picturetheaterwasprobablytheworkofHarryDavis,Pittsburgh’smostprosperousshowman.In1904,herented
最新回复
(
0
)