首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anχ=0和(Ⅱ)An+1χ=0,现有四个命题 (1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解; (3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anχ=0和(Ⅱ)An+1χ=0,现有四个命题 (1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解; (3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
admin
2020-03-02
45
问题
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)A
n
χ=0和(Ⅱ)A
n+1
χ=0,现有四个命题
(1)(Ⅰ)的解必是(Ⅱ)的解;
(2)(Ⅱ)的解必是(Ⅰ)的解;
(3)(Ⅰ)的解不是(Ⅱ)的解;
(4)(Ⅱ)的解不是(Ⅰ)的解.
以上命题中正确的是( )
选项
A、(1)(2)
B、(1)(4)
C、(3)(4)
D、(2)(3)
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(Ⅰ)的解,则α必是(Ⅱ)的解,可见命题(1)正确.
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,A
1
α,A
2
α,…,A
n
α,一方面有:
若kα+k
1
A
1
α+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边,并把A
n+1
α=0,A
n+2
α=0…代入,得
kA
n
α=0.
由A
n
α≠0而知必有k=0.类似地用A
n-1
左乘可得k
1
=0.因此,α,A
1
α,A
2
α,…,A
n
α线性无关.
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾.故A
n+1
α=0时,必有A
n
α=0,即(Ⅱ)的解必是(Ⅰ)的解.因此命题(2)正确.
所以应选A。
转载请注明原文地址:https://kaotiyun.com/show/KDS4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,Aχ=0是非齐次线性方程组Aχ=b所对应的齐次线性方程组,则下列结论正确的是()
设A是m×n矩阵,B是n×m矩阵,则()
设n阶矩阵A与B相似,E为n阶单位矩阵,则
设A,B为正定阵,则()
已知,且a与b不平行,则以OA、OB为邻边的平行四边形OACB的对角线OC上的一个单位向量为()
设总体X的概率密度函数为其中0<θ<1是位置参数,c是常数,X1,X2,…,Xn是取自总体X的简单随机样本,则c=_________;θ的矩估计量=________。
设二次型2x12+x22+x32+2x1x2+ax2x3的秩为2,则a=_________.
ξ,η相互独立且在[0,1]上服从均匀分布,则使方程x2+2ξx+η=0有实根的概率为()
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶导数n为().
随机试题
青春期与围绝经期功血治疗原则的不同点是()
酚妥拉明是
Justtellmewhatsubjectyou’dlikemeto______sothatIcouldgetsomenotesready.
开展党的群众路线教育实践活动的主要任务是聚焦到()上。
整个人类社会都离不开警察,原始社会以及将来的共产主义社会都会有警察的存在。( )
歌德评价帕格尼尼“在琴弦上展现了火一样的灵魂”。巴黎人为他的琴声陶醉,忘记了当时正在流行的霍乱。在维也纳,一个盲人听到他的琴声,以为是一个乐队在演奏,当得知这只是一个叫帕格尼尼的意大利人用一把小提琴奏出的声音时,盲人大叫一声:“这是个魔鬼!”这段文
英国每日邮报报道.在前往Azasskava洞穴的探险中,参与者发现了雪人的脚印,以及各种雪人用来表示他占领领地的标记——折断的树枝,另外在位于克麦罗沃地区某洞穴发现了灰色“头发”样本。据此.俄罗斯当局宣称雪人正生活在西伯利亚。下列哪项如果为真,最能质疑俄罗
ThereisasubstantialbodyofevidenceshowingthatHIVcausesAIDS—andthatantiretroviraltreatment(ART)hasturnedtheviral
在OSI七层协议中,_____________充当了翻译官的角色,确保一个数据对象能在网络中的计算机间以双方协商的格式进行准确的数据转换和加解密。
Themantowhomwehandedtheformspointedoutthattheyhadnotbeen______filledin.
最新回复
(
0
)