首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,—2,4,0)T,又B=(α3,α2,α1,β—α4),求方程组Bx=3α1+5α2—α3的通解。
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,—2,4,0)T,又B=(α3,α2,α1,β—α4),求方程组Bx=3α1+5α2—α3的通解。
admin
2019-03-23
35
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是四阶矩阵,α
1
,α
2
,α
3
,α
4
是四维列向量,若方程组Ax=β的通解是(1,2,2,1)
T
+k(1,—2,4,0)
T
,又B=(α
3
,α
2
,α
1
,β—α
4
),求方程组Bx=3α
1
+5α
2
—α
3
的通解。
选项
答案
由方程组Ax=β的通解表达式可知 R(A)=R(α
1
,α
2
,α
3
,α
4
)=4—1=3, 且 α
1
+2α
2
+2α
3
+α
4
=β,α
1
—2α
2
+4α
3
=0, 则B=(α
3
,α
2
,α
1
,β—α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),且α
1
,α
2
,α
3
线性相关,故R(B)=2。 又因为 (α
3
,α
2
,α
1
,β—α
4
)[*]=3α
1
+5α
2
—α
3
, 故知(—1,5,3,0)
T
是方程组Bx=3α
1
+5α
2
—α
3
的一个解。 (α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)[*]=4α
3
—2α
2
+α
1
=0, (α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)[*]=α
1
—2α
2
+4α
3
=0, 所以(4,—2,1,0)
T
,(2,—4,0,1)
T
是Bx=0的两个线性无关的解。 故Bx=3α
1
+5α
2
—α
3
的通解为 (—1,5,3,0)
T
+k
1
(4,—2,1,0)
T
+k
2
(2,—4,0,1)
T
,其中k
1
,k
2
是任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/KHV4777K
0
考研数学二
相关试题推荐
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
与α1=(1,-1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是________.
设A=,(1)证明当n>1时An=An-2+A2-E.(2)求An.
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
设A是m阶正定矩阵,B是m×n实矩阵,证明:BTAB正定r(B)=n.
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2),常数λ>0.
计算下列曲线所围成的平面图形的面积:(1)y=x2,y=x+2(2)y=sinx,y=cosx,x=0(3)y=x2,y=x,y=2x
随机试题
A.稀释剂B.吸收剂C.黏合剂D.润滑剂E.崩解剂黏性不足的药料制粒压片,需加
马克思主义中国化理论成果的精髓同中国共产党思想路线的核心是完全一致的,都是实事求是。实事求是的基本含义是()
有关上颌骨的生长发育,下面描述不正确的是
A.潮氏呼吸B.吸气性呼吸困难C.深大呼吸D.呼气性呼吸困难E.点头样呼吸支气管肺炎可有
下列对大豆脂类营养价值的描述错误的是
渗出液与漏出液的主要差异在于
在被代理人死亡后,何种情形下,委托代理人实施的代理行为仍然有效?()
甲公司2015年经营资产销售百分比70%,经营负债销售百分比15%,销售净利率8%,假设公司2016年上述比率保持不变,没有可动用的金融资产,不打算进行股票回购,并采用内涵增长方式支持销售增长,为实现10%的销售增长目标,预计2016年股利支付率(
血液是由血浆和血细胞组成的,在两层交界处,有很薄的一层白色物质,为白细胞和血小板。下列说法错误的是()。
列宁说:“没有抽象的真理,真理总是具体的。”这一思想可以理解为
最新回复
(
0
)