首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设区域D1为以(0,0),(1,1),(0,),(,1)为顶点的四边形,D2为以(,0),(1,0),(1,)为顶点的三角形,而D由D1与D2合并而成.随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度fX(χ)、fY(y).
设区域D1为以(0,0),(1,1),(0,),(,1)为顶点的四边形,D2为以(,0),(1,0),(1,)为顶点的三角形,而D由D1与D2合并而成.随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度fX(χ)、fY(y).
admin
2018-07-30
103
问题
设区域D
1
为以(0,0),(1,1),(0,
),(
,1)为顶点的四边形,D
2
为以(
,0),(1,0),(1,
)为顶点的三角形,而D由D
1
与D
2
合并而成.随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度f
X
(χ)、f
Y
(y).
选项
答案
易算得D
1
的面积为[*],D
2
的面积为[*],故D的面积为[*], ∴(X,Y)的概率密度为 [*] ∴f
X
(χ)=∫
-∞
+∞
f(χ,y)dy 当χ≤0或χ≥1时,f
χ
(χ)=0; 当0<χ<[*]时,f
X
(χ)=[*]2dy=1 当[*]≤χ<1时,f
X
(χ)=[*]2dy+∫
χ
1
2dy=1. 而f
Y
(y)=∫
-∞
+∞
f(χ,y)dχ 当y≤0或y≥1时,f
Y
(y)=0; 当0<y<[*]时,f
Y
(y)=∫
0
y
2dχ+[*]2dχ=1; 当[*]≤y<1时,f
Y
(y)=[*]2dχ=1.故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/KPW4777K
0
考研数学三
相关试题推荐
在区间(0,1)中任取两数,求这两数乘积大于0.25的概率.
当a,b取何值时,方程细有唯一解,无解,有无穷多解?当方程组有解时,求其解.
设函数f(x)连续,且.求f(x).
已知函数x=u(x,y)eax+by,其中u(x,y)具有二阶连续偏导数,且
计算二重积分,其中D是由直线y=x与y轴在第一象限围成的区域.
某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐,新、老非熟练工经过培训及实践至年终考核有成为熟练工.设第n年一月份统计的熟练工和非熟练工所占百分比分别为xn和yn,记成αn=(Ⅰ)求αn
已知总体X的概率密度f(x)=(λ>0),X1,…,Xn为来自总体X的简单随机样本,Y=X2.(Ⅰ)求Y的期望EY(记EY为b);(Ⅱ)求λ的矩估计量(Ⅲ)利用上述结果求b的最大似然估计量.
设随机变量X服从(0,1)上的均匀分布,求下列Yi(i=1,2,3,4)的数学期望和方差:(Ⅰ)Y2=eX;(Ⅱ)Y2=-2lnX;(Ⅲ)Y3=;(Ⅳ)Y42=X2.
设二维连续型随机变量(X,Y)的联合概率密度为(Ⅰ)求X与Y的相关系数;(Ⅱ)令Z=XY,求Z的数学期望与方差.
随机试题
某项目分期开工建设,开发商二期工程3、4号楼仍然复制使用一期工程的施工图纸。施工时施工单位发现该图纸使用的02标准图集现已废止,施工单位的正确做法是()。
T型管拔出后患者出现持续性右上腹痛伴肌紧张,最可能的原因是()(2011年)
肝硬化并发肝肾综合征是
在温度对荧光分析的影响中,说法正确的是
下列哪一类细胞产生IgE
百货组以星星商场的名义与丰华服装厂签订的合同是否有效?为什么?上述合同中买方的权利、义务应由谁享有、承担?为什么?
在增值税的征税范围中,混合销售行为属于特殊行为的一种。混合销售行为即一项销售行为既涉及增值税应税货物又同时涉及非应税劳务。对于从事货物生产、批发或零售为主,并兼营非应税劳务的增值税纳税人,发生混合销售行为,应当征收( )。
下列机构中,可以代理客户从事期货交易的是()。
某市美术协会和书法协会联合举办“唐宋名人书画展”。下列哪幅作品可能出现在展厅?()
Oneeveningin1993,TrevorBayliswaswatchingaprogrammeontelevisionabouttheAIDSepidemicinAfrica.Theprogrammeexpla
最新回复
(
0
)