首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维向量组 (Ⅰ)α1,α2,…,αs, (Ⅱ)β1,β2,…,βs, 若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=
设有两个n维向量组 (Ⅰ)α1,α2,…,αs, (Ⅱ)β1,β2,…,βs, 若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=
admin
2021-07-27
55
问题
设有两个n维向量组
(Ⅰ)α
1
,α
2
,…,α
s
,
(Ⅱ)β
1
,β
2
,…,β
s
,
若存在两组不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
,使(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
-λ
1
)β
1
+…+(k
s
-λ
s
)β
s
=0,则( ).
选项
A、a
1
+β
1
,…,α
s
+β
s
,α
1
-β
1
,…,α
s
-β
s
线性相关
B、a
1
+β
1
,…,α
s
+β
s
,α
1
-β
1
,…,α
s
-β
s
线性无关
C、α
1
,…,α
s
及β
1
,…,β
s
均线性相关
D、α
1
,…,α
s
及β
1
,…,β
s
均线性无关
答案
A
解析
因存在不全为零的数是k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
使得(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
-λ
1
)β
1
+(k
2
-λ
2
)β
2
+…+(k
s
-λ
s
)β
s
=0,整理得k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
s
(α
s
+β
s
)+λ
1
(α
1
-β
1
)+λ
2
(α
2
-β
2
)+…+λ
s
(α
s
-β
s
)=0,从而得α
1
+β
1
,…,α
s
+β
s
,α
1
-β
1
,…,α
s
-β
s
线性相关.故选(A).
转载请注明原文地址:https://kaotiyun.com/show/KQy4777K
0
考研数学二
相关试题推荐
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
求微分方程χy′=yln的通解.
A是4阶实对称矩阵,A2+2A=0,r(A)=3,则A相似于().
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
下列矩阵中不能相似于对角阵的矩阵是
设n阶矩阵A的伴随矩阵为A*,证明:|A*|=|A|n一1。
设非齐次线性方程组Ax=b有两个不同解β1和β2,其导出组的一个基础解系为α1,α2,c1,c2为任意常数,则方程组Ax=b的通解为
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α3线
随机试题
开展国际营销的企业一旦在某国外市场建立了一套广泛的销售网络并取得销售的显著增长,就应该在国外市场上采取与本国类似的营销策略。因此,在开创初期,或在才建立了销售代表处的国外市场上,需采取与本国不同的营销策略。以下哪项如果为真,则最能支持上述结论?
水样中SO42-的测定使用的指示剂为()。
下列关于胰液分泌调节的叙述,正确的包括
尸僵多出现在死亡后
已知向量a=(-3,-2,1)T,b=(1,-4,-5)T,则|a×b|等于:
从外部来看,企业的任务首先是()。
在个案社会工作中,社会工作者行为取舍的标准是()。
设IP地址为18.250.31.14,子网掩码为255.240.0.0,则子网地址是()。
Willchipsonedaybeplantedinourbodiesforidentification?AUSdoctorhasplantedunderhisskinacomputerchipthat
A、20.B、22.C、21.D、23.B
最新回复
(
0
)