首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的通解为[2,1,0,1]T+k[1,一1,2,0]T.记 a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由; (2)α4能否由α1,α2,α3线
已知线性方程组 的通解为[2,1,0,1]T+k[1,一1,2,0]T.记 a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由; (2)α4能否由α1,α2,α3线
admin
2019-08-12
59
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,一1,2,0]
T
.记
a=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.
问:(1)α
4
能否由α
1
,α
2
,α
3
,α
5
线性表出,说明理由;
(2)α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由.
选项
答案
(1)α
4
能由α
1
,α
2
,α
3
,α
5
线性表出. 由线性非齐次方程的通解[2,1,0,1]
T
+k[1,一1,2,0]
T
知 α
5
=(k+2)α
1
+(一k+1)α
2
+2kα
3
+α
4
, 故 α
4
=一(k+2)α
1
一(一k+1)α
2
—2kα
3
+α
5
. (2)α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程的基础解系只有一个非零向量,故r(α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4—1=3,且由对应齐次方程的通解知α
1
一α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/xMN4777K
0
考研数学二
相关试题推荐
(95年)设函数y=y(x)由方程xef(y)=ey确定,其中f具有二阶导数,且f’≠1,求
(93年)设x>0.常数a>e.证明:(a+x)a<aa+x
(94年)设f(x)=,则f(x)在x=1处的
(91年)曲线
(2001年)已知矩阵且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是3阶单位阵,求X.
已知矩阵B=相似于对角矩阵A.(1)求a的值;(2)利用正交变换将二次型XTBX化为标准形,并写出所用的正交变换;(3)指出曲面XTBX=1表示何种曲面.
设f(x)在x>0上有定义,且对任意正实数x,yf(xy)=xf(y)+yf(x),f’(1)=2,试求f(x).
设数列{xn}满足0<x1<1,ln(1+xn)=exn+1一1(n=1,2,…).证明当0<x<1时,ln(1+x)<x<ex一1;
设A,B均为n阶矩阵,A可逆,且A与B相似,则下列命题中正确的个数为()①AB与BA相似;②A2与B2相似;③AT与BT相似;④A-1与B-1相似。
随机试题
推车式水基型灭火器首次维修以后每满()年应维修。
我国民法的基本原则包括()。
钟玲开了一家网络小店,虽然每月的收入并不稳定,但因为丈夫有固定收入,所以生活得还算滋润。只是多年来,钟玲夫妇一直处于无序理财的境况中,离富足的日子似乎还有一定的距离,需要金融理财师协助规划。经过初步沟通面谈后,你获得了以下家庭、职业与财务信息:一、案例成
税收筹划的主体不可能是()。
关于证券投资基金的表述,不正确的有()。[2014年9月证券真题]
我国基金会的组织结构必须具有哪些内容?()
不仅仅是我们的创意产业需要科幻。美国未来学家阿尔文.托夫勒曾说,一个快速变化的社会,________。中国正处于这样的快速变化中,我们需要科幻小说为我们提供海量的未来图景,让我们做好心理准备,迎接扑面而至的未来。填入画横线部分最恰当的一句是(
奥斯陆大学社会人类学家阿奇蒂说,挪威人特别__________平等,__________特权,富翁的孩子跟泥瓦匠的孩子也应该上同样的学校;他们认为自己的生活品质在全世界最高,而平等意识则是生活品质的__________构成。因此,至少在挪威人的观念里,炫富
(1)编写SELECT语句,从orders(订单)表中统计2007年各月份签订的订单数。统计结果依次包含“月份”和“订单数”两个字段,并按月份升序排序,统计结果存放在tableone表中。最后要执行SELECT语句,并将该SELECT语句存放在命令文件po
SometimeagoafriendwhohadlosthisCityjobconfessedhehadconsideredkillinghimself.Iwasappalledbutnotsurprised:
最新回复
(
0
)