首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,…,αn的秩为r2,在其中任取m个向量β1,β2,…,βm,此向量组的秩为r1,证明r1≥r2+m一n.
已知向量组α1,α2,…,αn的秩为r2,在其中任取m个向量β1,β2,…,βm,此向量组的秩为r1,证明r1≥r2+m一n.
admin
2020-09-25
55
问题
已知向量组α
1
,α
2
,…,α
n
的秩为r
2
,在其中任取m个向量β
1
,β
2
,…,β
m
,此向量组的秩为r
1
,证明r
1
≥r
2
+m一n.
选项
答案
向β
1
,β
2
,…,β
m
中添加余下的n一m个向量中的一个向量β
m+1
向量组β
1
,β
2
,…,β
m
,β
m+1
的最大无关组的向量个数最多比向量组β
1
,β
2
,…,β
m
的最大无关组的向量个数大1,即R(β
1
,β
2
,…,β
m
,β
m+1
)≤1+R(β
1
,β
2
,…,β
m
).继续下去可得:R(β
1
,β
2
,…,β
n
)≤n—m+R(β
1
,β
2
,…,β
m
),即r
2
≤r
1
+n一m,此即r
1
≥r
2
+m一n.
解析
转载请注明原文地址:https://kaotiyun.com/show/KWx4777K
0
考研数学三
相关试题推荐
如果β=(1,2,t)T可以由α1=(2,l,1)T,α2=(—1,2,7)T,α3=(1,—1,—4)T线性表示,则t的值是________。
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_________.
已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________。
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
已知X=AX+B,其中求矩阵X.
(2013年)当x→0时,1一cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
随机试题
多尿期的标志是()
共同参与型护患关系模式的特点包括()。
上海甲公司作为卖方和澳门乙公司订立了一项钢材购销合同,约定有关合同的争议在中国内地仲裁。乙公司在内地和澳门均有营业机构。双方发生争议后,仲裁庭裁决乙公司对甲公司进行赔偿。乙公司未在规定的期限内履行仲裁裁决。关于甲公司对此采取的做法,下列哪些选项是正确的?
我国21世纪初可持续发展的基本原则有()。
某施工工地脚手架垮塌,造成10人重伤,根据《生产安全事故报告和调查处理条例》规定,该事故的等级属于()。
茶叶含有咖啡因,故容易失眠的人睡前不宜饮用浓茶。()
在当前社会,人与人之间的激烈竞争在所难免,但不少人因为得失心较重,做事时不惜违反公德伦理和规则秩序,最后不仅很难占到便宜,有时反而会害了自己。随着制度越来越健全,太重得失而逾规的行为只能是搬起石头砸自己的脚。比如,运动员们每日辛苦训练就是为了在比赛中获得奖
有以下计算公式若程序前面已经在命令行中包含math.h文件,不能够正确计算上述公式的程序段是
It’sself-evidentthatnoonewouldhavetimetoknoweverythinggoingonintheworld.
Peoplehavewonderedforalongtimehowtheirpersonalitiesandbehaviorsareformed.It’snoteasytoexplainwhyonepersoni
最新回复
(
0
)