首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3均为三维列向量,记矩阵 A=[α1,α2,α3], B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3] 如果|A|=1,那么|B|=__________.
设α1,α2,α3均为三维列向量,记矩阵 A=[α1,α2,α3], B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3] 如果|A|=1,那么|B|=__________.
admin
2019-03-22
93
问题
设α
1
,α
2
,α
3
均为三维列向量,记矩阵
A=[α
1
,α
2
,α
3
], B=[α
1
+α
2
+α
3
,α
1
+2α
1
+4α
3
,α
1
+3α
2
+9α
3
]
如果|A|=1,那么|B|=__________.
选项
答案
2
解析
解一 B=[α
1
+α
2
+α
3
,α
1
+2α
2
+4α
3
,α
1
+3α
2
+9α
3
]=[α
1
,α
2
,α
3
]
①
利用命题2.1.2.1(2)得到
解二 用行列式性质对B的列向量进行运算找出与A的行列式的关系,即
|B|=|α
1
+α
2
+α
3
,α
1
+2α
2
+4α
3
,α
1
+3α
2
+9α
3
|
|α
1
+α
2
+α
3
,α
2
+3α
3
,α
2
+5α
3
|
|α
1
+α
2
+α
3
,α
2
+3α
3
,2α
3
|=2|α
1
+α
2
+α
3
,α
2
+3α
3
,α
3
|
|2|α
1
+α
2
+α
3
,α
2
,α
3
|
2|α
1
,α
2
,α
3
|=2|A|=2.
(注:命题2.1.2.1 设A=[a
ij
]
n×n
,B=[b
ij
]
n×n
,E为n阶单位矩阵,k为常数.(2)|AB|=|A||B|,|AB|=|BA|,但AB≠BA;)
转载请注明原文地址:https://kaotiyun.com/show/kYP4777K
0
考研数学三
相关试题推荐
设f(x)在(一∞,+∞)可导,x0≠0,(x0,f(x0))是y=f(x)的拐点,则()
已知矩阵有两个线性无关的特征向量,则a=________。
设某商品的需求函数为Q=100—5P,其中价格P∈(0,20),Q为需求量。(Ⅰ)求需求量对价格的弹性Ed(Ed>0);(Ⅱ)推导=Q(1—Ed)(其中R为收益),并用弹性Ed说明价格在何范围内变化时,降低价格反而使收益增加。
曲线的斜渐近线方程为________。
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程=e2xz,求f(u)。
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
设I1=,其中α是正常数,试证明:I1>I2.
随机试题
若f(x)在x=a处可导,则=
优化改革社会心理的方法包括()。
A.4小时B.24小时C.7天D.14天E.3天在夏季未打开的无菌包可保存
某郊区小学校为方便乘坐地铁,与相邻研究院约定,学校人员有权借研究院道路通行,每年支付一万元。据此,学校享有的是下列哪一项权利?
[2008年第112题]下列不属于产品销售收入的是()。
主张学习的目的在于以发现学习的方式、使学科的基本结构转变为学生头脑中的认知结构的心理学家为布鲁纳。()
某高中高一、高二、高三三个年级学生的平均年龄分别为15.2岁、17.45岁、19.2岁,高一、高二两个年级学生的平均年龄为16.2岁,高一、高三两个年级学生的平均年龄为16.7岁。该高中全体学生的平均年龄为多少岁?()
某商场经统计发现顾客对某商品的日需求量X~N(μ,δ2),且日平均需求量μ=40(件),销售在30~50(件)之间的概率为0.5.若进货不足每件损失利润70元.进货过量每件损失100元,求日最优进货量.
Bigcitiestodayareconfrontedwithveryseriousproblems.Transportisa【C1】______difficulty:someplannersbelievein【C2】____
LearningTourRecently,wewillholdalearningtourforthoseEnglishlearners.Byjoiningourhelpfultour,everyonewill
最新回复
(
0
)