首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3均为三维列向量,记矩阵 A=[α1,α2,α3], B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3] 如果|A|=1,那么|B|=__________.
设α1,α2,α3均为三维列向量,记矩阵 A=[α1,α2,α3], B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3] 如果|A|=1,那么|B|=__________.
admin
2019-03-22
110
问题
设α
1
,α
2
,α
3
均为三维列向量,记矩阵
A=[α
1
,α
2
,α
3
], B=[α
1
+α
2
+α
3
,α
1
+2α
1
+4α
3
,α
1
+3α
2
+9α
3
]
如果|A|=1,那么|B|=__________.
选项
答案
2
解析
解一 B=[α
1
+α
2
+α
3
,α
1
+2α
2
+4α
3
,α
1
+3α
2
+9α
3
]=[α
1
,α
2
,α
3
]
①
利用命题2.1.2.1(2)得到
解二 用行列式性质对B的列向量进行运算找出与A的行列式的关系,即
|B|=|α
1
+α
2
+α
3
,α
1
+2α
2
+4α
3
,α
1
+3α
2
+9α
3
|
|α
1
+α
2
+α
3
,α
2
+3α
3
,α
2
+5α
3
|
|α
1
+α
2
+α
3
,α
2
+3α
3
,2α
3
|=2|α
1
+α
2
+α
3
,α
2
+3α
3
,α
3
|
|2|α
1
+α
2
+α
3
,α
2
,α
3
|
2|α
1
,α
2
,α
3
|=2|A|=2.
(注:命题2.1.2.1 设A=[a
ij
]
n×n
,B=[b
ij
]
n×n
,E为n阶单位矩阵,k为常数.(2)|AB|=|A||B|,|AB|=|BA|,但AB≠BA;)
转载请注明原文地址:https://kaotiyun.com/show/kYP4777K
0
考研数学三
相关试题推荐
幂级数的收敛半径R=________。
设α,β均为三维列向量,βT是β的转置矩阵,如果αβT=,则αTβ=________。
将函数展成x的幂级数为________。
设f(x)=3x2+Ax—3(x>0),A为正常数,则A至少为________时,有f(x)≥20(x>0)。
曲线的斜渐近线方程为________。
设函数y=则y(n)(0)=________。
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(x)<0,试证明存在ξ∈(a,b)使
设则f′(x)=____________.
随机试题
“四境盈壘,道殣相望,盗賊司目,民無所放。”句中“放”应释为【】
2岁男孩,持续高热伴咳嗽6天,加重1天,烦躁、气促,青霉素治疗无效。体检:体温39.5℃,口唇青紫,三凹征明显,呼吸65次/分,心率160次/分,气管略右移,左背下部呼吸音低,叩诊浊音,肝肋下2cm,X线胸片示两肺散在斑片状阴影,左肺下部密度均匀升高,可见
急性上呼吸道感染最主要的治疗措施是
A.准予注册B.不予注册C.注销注册D.重新注册E.撤销注册
小儿可自动控制排尿的年龄约为
滴用β受体阻断剂后眼部不良反应有()。
小儿肥胖症的正确饮食结构()。
在工程验收过程中,发现某检验批达不到设计要求,如果经()核算,仍能满足结构安全和使用功能的情况下,可以予以验收。
在道路货物分类中,按运输条件可将货物分为()。
Backintheday,agoodreportcardearnedyouaparentalpatontheback,butnowitcouldbemoneyinyourpocket.Experiments
最新回复
(
0
)