首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2015年] 设函数f(x)=x+a ln(1+x)+bx sinx,g(x)=kx3,若f(x)与g(x)在x→0时是等价无穷小,求a,b,k的值.
[2015年] 设函数f(x)=x+a ln(1+x)+bx sinx,g(x)=kx3,若f(x)与g(x)在x→0时是等价无穷小,求a,b,k的值.
admin
2019-04-05
96
问题
[2015年] 设函数f(x)=x+a ln(1+x)+bx sinx,g(x)=kx
3
,若f(x)与g(x)在x→0时是等价无穷小,求a,b,k的值.
选项
答案
考虑到g(x)=kx
3
为x的三阶无穷小,可将f(x)展为三阶无穷小,求其待定常数,即将ln(1+x)及sinx分别展为 ln(1+x)=x一[*]+o(x
3
),即x—ln(1+x)一[*](x→0); sinx=x-[*]+0(x
3
), 即x—sinx~[*](x→0). 将[*]转化为求x→0时有理多项式的极限. 解一 将ln(1+x)及sinx的上述麦克劳林级数展开式代入f(x)得到 f(x)=x+a[x一[*]+o(x
3
)]+bx[x一[*]+o(x
3
)] =x+ax一[*]+a·o(x
3
)+bx
2
一[*]+b·o(x
4
) =x+ax一[*]+a·o(x
3
)+bx
2
=(1+a)x+(b一[*])x
2
+[*]+o(x
3
). 由[*]=1,得到 1+a=0, b一[*]=0.[*]=1. 解之即得 a=—1.b=—[*].k=—[*] 解二 也可直接利用下述等价无穷小: x一ln(1+x)一[*](x→0)或ln(1+x)一x+[*](x→0), x-sinx~[*](x-0)求之.为此将f(x)恒等变形为 f(x)一x+a[1n(1+x)一x+[*]]-bx[x-sinx-x] 则[*] 故[*]=1, l+a=0, b一[*]=0. 即 a=一1. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/KXV4777K
0
考研数学二
相关试题推荐
已知矩阵相似.(1)求x与y;(2)求一个满足P-1AP=B的可逆矩阵P.
求极限
解下列微分方程:(Ⅰ)y"-7y’+12y=x满足初始条件的特解;(Ⅱ)y"+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)y"’+y"+y’+y=0的通解.
设试判别函数在原点(0,0)处,是否可偏导?偏导数是否连续?是否可微?
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为v0/3?并求到此时刻该质点所经过的路程.
当x→+∞时,ln(1+[*])与1/x是等价无穷小量,于是[*]
当x→0时,α(x)=kx2与β(x)=是等价无穷小,则k=_______。
[2018年]求不定积分∫e2xarctan
[2018年]已知曲线L:y=x2(x≥0),点0(0,0),点A(0,1).P是L上的动点,S是直线OA与直线AP及曲线L所围图形的面积.若P运动到点(3,4)时沿x轴正向的速度是4,求此时S关于时间t的变化率.
[2002年]设0<a<b,证明不等式.
随机试题
指出下面这则通报存在的问题,并进行修改。关于表彰市××厂实现安全生产年的通报市属各企业:为确保企业生产和人民生命财产安全,我市××厂从各方面采取有力措施,花大力气抓各项安全生产制度的贯彻落实,并建立了安全生产各级岗位责任制,2003年
根据人们自我追求和行为习惯的不同,可以把谈判对手分为()
有关脑膜瘤的手术决策中哪项是错误的
破伤风病人采用人工冬眠,主要目的是
全面深化改革,要求发挥经济体制改革的()。
按伤亡事故的有关特征进行分类汇总,研究事故发生的有关情况的事故统计方法是()。
下列氧化还原反应不会对人类的生活、生产造成危害的是()。
优先股不具有的权利是()。(中山大学2012真题)
Directions:Forthispart,youareallowed30minutestowriteanessaycommentingonthetopicofgraduatecraze.Youcangive
Eachartistknowsinhisheartthatheissayingsomethingtothepublic.Hehopesthepublicwilllistenandunderstand—hewant
最新回复
(
0
)