首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
admin
2022-10-08
63
问题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+
x
2
(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
选项
答案
[*] 即C=4-a,因此f(x)=[*]ax
2
+(4-a)x旋转体的体积为 V(a)=π∫
0
1
f
2
(x)dx=π∫
0
1
[[*]ax
2
+(4-a)x]
2
dx=[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/KYR4777K
0
考研数学三
相关试题推荐
设向量组(I):α1=(2,4,-2)T,α2=(-1,a-3,1)T,α3=(2,8,b-1)T;(Ⅱ):β1=(2,b+5,-2)T,β2=(3,7,a-4)T,β3=(1,2b+4,-1)T.问.a,b取何值时,r(I)=r(Ⅱ),但(I)与(Ⅱ
(1)设α1,α3,β1,β2均为3维列向量,且α1,α3线性无关,β1,β2线性无关,证明存在非零向量ξ,使得ξ既可由α1,α3线性表示,又可由β1,β2线性表示;(2)当时,求所有的既可由α1,α2线性表示,又可由β1,β2线性表示的向量ξ.
已知向量组α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,6+3,5)T.问:a,b为何值时,β不能由α1,α2,α3,α4线性表示;
设f(x)在点x=0某一邻域内具有二阶连续导数,且证明级数绝对收敛.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)T,α2=(a一1,一a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,一5a,2a+1)T.试求a、λ0的值
设矩阵已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P-1AP为对角形矩阵.
设函数y=f(x)由方程e2x+ycos(xy)=e-1确定,求曲线y=f(x)在点(0,1)处的法线方程.
设y=f(x)有二阶连续导数,且满足xy"+3xy′2=1-e-x.若f(x)在x=0处取得极值,问f(0)是极小值还是极大值?
曲线的渐近线条数为()
设f(x)具有连续导数,求
随机试题
PASSAGEONE(1)Iknownowthatthemanwhosatwithmeontheoldwoodenstairsthathotsummernightoverthirty-fiveyear
蔬菜是人类不可缺少的食物,它富含人体需要的维生素、矿物质及消化系统所必需的粗纤维等。下列说法中错误的是()。
[A]Uniqueness[B]Attentiveness[C]Communication[D]Personalization[E]Appreciation[F]Recognitio
关于半价层的叙述,正确的是
若
有关基础刚性角的叙述正确的是()。
双面水准尺分为主尺和辅助尺两面,其中主尺为()。
社会工作领域,服务策划的形式包括()。
下列数据结构中,属于非线性结构的是( )。
A、Afitnessprogramofferedtothegeneralpublic.B、Aphysicalexercisetobuildupmuscles.C、Aprogramthatmakespeoplekeep
最新回复
(
0
)